Markets for Risk Management

Insurance Cycles: Interest Rates and the Capacity Constraint Model

Neil A. Doherty and James R. Garven 1995 Journal of Business

Copyright J. R. Garven. Not to be reproduced without permission.

Motivation

- Financial pricing models imply that underwriting returns of propertyliability insurers should conform to an unpredictable time series process; e.g., $r_{u,t} = E(r_{u,t}) + M_{t}$.
 - However, cycles are widely reported.
 - Is the "underwriting cycle" an illusory statistical artifact, or is it real?

Previous Literature

- <u>Feedback/lag (aka "irrational insurer") models;</u> e.g. Brockett and Witt (1982 *JRI*) and Venezian (1985 *JRI*) – debunked by Cummins and Outreville (1987 *JRI*), who model the insurer as a rational expectations decision-maker.
- <u>Financial pricing models</u>; Doherty and Kang (1988 *JBF*) underwriting returns are inversely related to interest rates; cycles are statistical artifacts of data and regulatory lags (and therefore not "real").

Previous Literature

- <u>Capital Constraint Models</u>; e.g., Winter (1994 *JFI*) and Gron (1994 *RJ*)
 - Insurers experience sharp price spikes and reduction in underwriting capacity following surplus shocks because of the high cost of accessing external capital markets.
 - Following an adverse surplus shock, the quantity of insurance traded falls (due to the withdrawal of supply and its impact on prices).
 - Price can be subject to even further upward pressure since the demand for insurance may rise.

Previous Literature

- Capital Constraint Models (Continued)
 - Slowly, capital is replenished internally and the product market returns to a long run equilibrium.
 - If the price spike is sufficiently severe, short-term profit opportunities can overcome the additional costs of external capital and new capital will flow in.

This paper's contributions

- Synthesis of the financial pricing and capacity constraint literatures.
- We show how changes in interest rate simultaneously affect the insurer's capital structure and the equilibrium level of underwriting profit.

This paper's contributions

- Depending upon firm-specific factors such as asset and liability duration, access to capital markets, and availability of capital substitutes (e.g., reinsurance), insurers will be differently affected by changing interest rates.
- The average market response to changing interest rates roughly tracks market clearing prices, although the response is somewhat muted.

$$r_{_{\!M}}=\frac{P-L}{P},$$

where

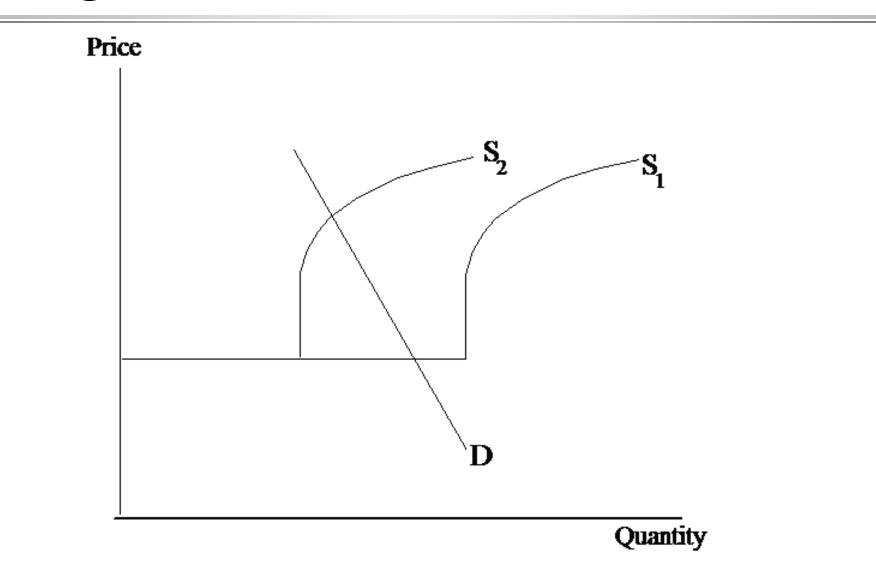
r_{μ} = rate of return on underwriting; P = insurer's aggregate premiums (net of expenses), and L = insurer's incurred losses.

 In a single period setting, P* = E(L)/(1+r), where r is the nominal (riskless) interest rate; thus

$$E(r_{u}) = \frac{P^{*} - E(L)}{P^{*}} = -r.$$

• Interest rate sensitivity is greater for lines of insurance with long claim delays compared with lines of insurance with short claim delays, an effect captured by the insurance CAPM:

$$E(r_{\mu}) = -kr_{f} + \beta_{\mu}\lambda, \qquad (1)$$


where k is the average claim delay, β_{μ} is the underwriting beta, r_f is the risk free rate, and λ is the market risk premium.

• Assuming that β_{n} and λ are constants, expected underwriting returns respond to interest rates as follows:

$$dE(r_{u})/d(kr_{f}) = -1$$
(2)

E(r_µ)'s interest rate sensitivity is determined by k; ∴ cross sectional differences in k.
 ⇒ differences in the response of underwriting returns to interest rate changes.

Figure 1: The Gron-Winter Model

The Gron-Winter Model

- A preference for internal capital, combined with a given probability of insolvency, generates a particular shape for the short run supply curve.
 - For a given level of equity, there is a limit on the number of policies that can be sold at a given price without increasing the probability of insolvency.
- Beyond this limit, the price <u>must increase</u> in order to maintain the same level of insolvency risk. Thus, the supply function is kinked, being elastic for quantities below the kink and inelastic

Integration of Gron-Winter with Interest Rate Effects

- The capacity constrained model may be summarized by the predicted *short run* relationship between $E(r_u)$ and the insurer's equity $Q: dE(r_u)/dQ \le 0$.
- Next, consider the effects of interest rate changes on insurer surplus.
- The sensitivity of insurer surplus to changes in interest rates depends upon duration of the insurer's equity D_Q .

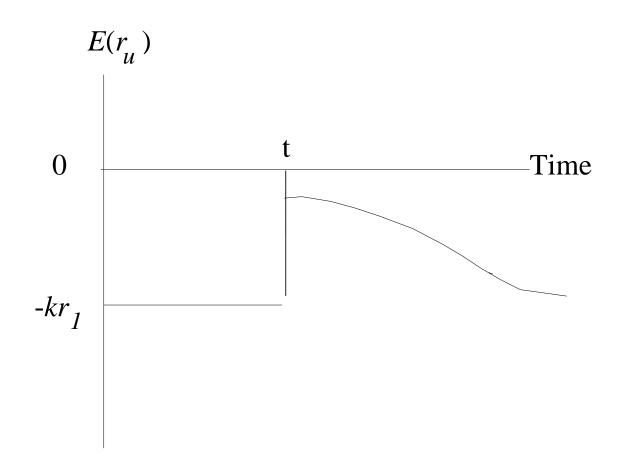
Integration of Gron-Winter with Interest Rate Effects

- If $D_Q > 0$ (<0), then $dQ / dr_f < 0$ (>0).
- If $D_Q = 0$, then $dQ/dr_f = 0$; this is implicitly assumed by the insurance CAPM!
- ∴ the *short term* effects of interest rate changes are given by equation (3a):

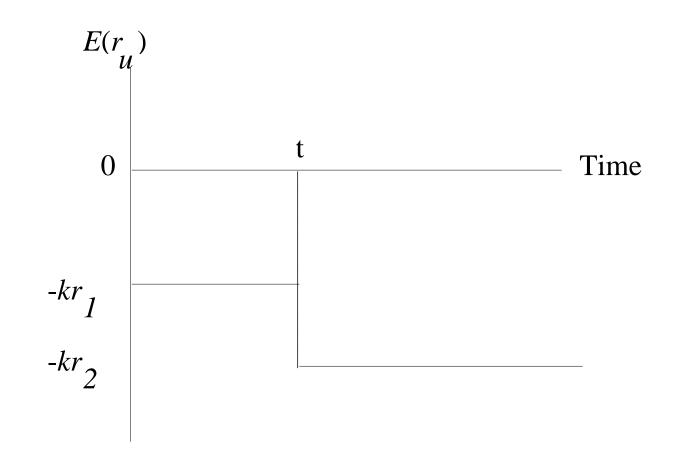
$$\frac{dE(r_{u})}{d(kr_{f})} = \frac{\partial E(r_{u})}{\partial Q} \frac{\partial Q}{\partial (kr_{f})}$$

$$= \begin{cases} \geq -1 \text{ if surplus duration is positive} \\ = -1 \text{ if surplus duration is zero} \\ \leq -1 \text{ if surplus duration is negative} \end{cases}$$
(3a)

Integration of Gron-Winter with Interest Rate Effects


Following Babbel and Staking (1995 JRI),

$$D_{Q} = (D_{A} - D_{L})[V(A)/V(Q)] + D_{L}, \quad (4)$$


where

 D_A = duration of the insurer's assets; D_L = duration of the insurer's liabilities; and V(A)/V(Q) = the ratio of the value of the insurer's assets divided by the value of surplus.

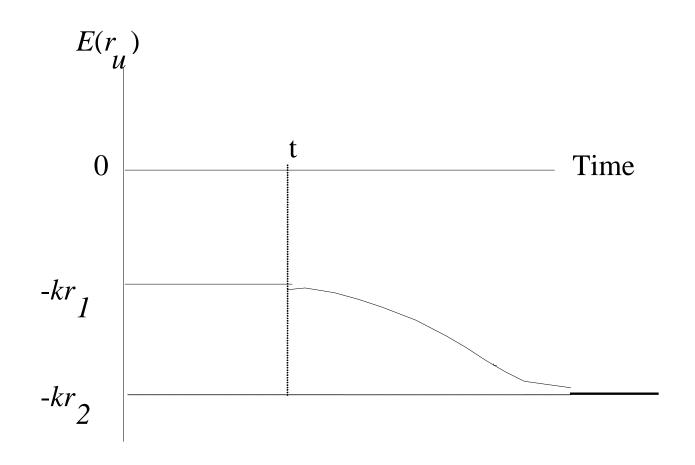

Figure 2: The Gron-Winter Model

Figure 3: The Interest Rate Model

Figure 4: Synthesis of Gron-Winter with Interest Rate Model

Determinants of short-run return responses

- In addition to the duration effects, we also study the effects of transaction and adverse selection costs related to accessing the capital and reinsurance markets.
- Proxies for capital and reinsurance access
 - <u>Public vs. Private</u> Publicly traded stock insurers have lower transaction costs for raising new equity than private stock and mutual insurers.
 - <u>Size</u> Large firms can raise new capital more cheaply than small firms.
 - <u>Reinsurance</u> firms with more costly access to reinsurance markets have higher dE(ru)/d(krf).

Cross-Sectional Model

 $\frac{dE(r_{\mu})}{d(kr_{f})} = f(QDUR, PUBLIC, PRIVATE, REINS, SIZE)$ (5)

where

QDUR = equity duration; *PUBLIC* = 1 if publicly traded, 0 if private or mutual; *PRIVATE* = 1 if privately held, 0 if public or mutual; *REINS* = measure of reinsurance access; and *SIZE* = firm size.

Aggregate (1939-88) Time Series Results

$$r_{ut} = \alpha_0 + \alpha_1 (k r_{ft}) + \varepsilon_t \tag{7}$$

$$r_{u} = 4.8390 - 0.7570(kr_{f})$$

$$r_{ut} = \alpha_0 + \alpha_1 (kr_{ft}) + \alpha_2 (kr_{ft})^2 + \varepsilon_t, \qquad (6)$$

$$r_{\mu} = 6.3587 - 1.4185(kr_{f}) + 0.0383(kr_{f})^{2}$$

$$(4.556) \quad (-3.616) \qquad (1.782)$$

Cross-Section Analysis: Data

- <u>Data</u>: AM Best, 1976-1988 panel of 277 property-liability insurers (groups and unaffiliated single companies).
- 136 firms were stock companies, and 141 were mutuals.
- 57% of stock insurers were privately held;
 43% were publicly traded.
- <u>Groups</u>: 52.5% (74) mutuals, 57.7% (45) private stock insurers, and 91.4% (53) publicly traded stock insurers.

Two pass regression procedure

• The first pass equation was specified in the following manner:

$$r_{ujt} = \alpha_{0j} + \alpha_{1j}(kr_{ft}) + \mathcal{E}_{jt}.$$
 (8)

• The second pass equation was specified in the following manner:

$$\alpha_{1j} = \beta_{0j} + \sum_{i=1}^{n} \beta_{ij} X_{ij} + \mu_{j}$$
(9)

where
$$X_{ij}$$
's represent the variables listed in equation (5).

Table 1 – Empirical Results

Regression 1			Regression 2		
Variable	Coefficient	<i>p</i> value (1-tail test)	Variable	Coefficient	<i>p</i> value (1-tail test)
INTERCEPT	-4.6792	0.0001	INTERCEPT	-3.8091	0.0001
QDUR	-0.0154	0.0589	ADUR	-0.2007	0.0006
			LDUR	0.5882	0.0001
PUBLIC	-0.0028	0.4930	PUBLIC	0.0647	0.3429
PRIVATE	-0.6740	0.0001	PRIVATE	-0.7870	0.0001
SIZE	0.1386	0.0001	SIZE	0.0492	0.0096
REINS	0.0782	0.0841	REINS	0.0606	0.1398
GROUP	1.1712	0.0001	GROUP	1.2795	0.0001
GROUPRE	0.0175	0.4031	GROUPRE	0.0316	0.3266
ADJUSTED R ²	0.0590		ADJUSTED R ²	0.0845	

Summary of Results

- Results are consistent with the capital constraint predictions.
- Policy implication Since underwriting returns are underresponsive to interest rate changes, by making prices even less responsive, the "optimal" response by insurers is to ration supply; thereby aggravating the insurance availability problem.