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Motivation

• We examine the role played by corporate income 

taxation in creating incentives for firms to 

contractually reallocate risk (in this case, via 

reinsurance). 

• Historically, the prospect of tax shield under-

utilization has been an important problem.

• Modeling considerations – there must be a “cost” 

associated with low income; although insurers are 

risk neutral, the valuation function is nonlinear due 

to the convexity of the firm’s tax liability. 
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Other Approaches

• Expected utility framework (Borch (1960, 1962)) -

- with HARA utility, reinsurance supplied and 

demanded on a proportional basis.

• Mean-variance framework (Blazenko (1986), 

Eden and Kahane (1990))

• Value Maximization framework (Doherty/Tiniç 

(1981), Garven (1987), Garven and Lamm-

Tennant (2003), Mayers/Smith (1982, 1990)
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Contributions

• Analysis of the effect of taxes on underwriting capacity 
and equilibrium in insurance and reinsurance markets

• Asymmetric taxes 1) cause reinsurance to yield net tax 
benefits, and 2) are sufficient (although not necessary) 
for the existence of reinsurance.

• In equilibrium, asymmetric taxes cause insurance prices 
to be actuarially unfair, and the expected return on 
capital invested in insurance reflects the probability of 
paying taxes.

• More generally, asymmetric taxes create a corporate 
demand for hedging (irrespective of investor risk 
preferences).
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Model Assumptions and Notation

• Two periods: t=0, the present, and t=1, 

the future;

• No contracting costs or bankruptcy risk;

• Insurer assets are riskless;

• Aggregate claims costs X ~ N(Ex,sx) 

and are stochastically independent of 

social wealth;
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Model Assumptions and Notation

• Competitively structured insurance market, 
where p represents the aggregate premium of 
the economy-wide risk pool;

• m risk neutral insurers differ with respect to 
endowed surplus Sj.  These insurers must 
optimally select a proportionate share gj (gj 
[0,1]) of the economy-wide risk pool.  Initially, 
m and Sj are assumed to be fixed for all j; 

• Asymmetric tax regime levies taxes on the sum 
of underwriting profit and investment income 
at the rate t; however, losses are not rebated. 
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Figure 1: Profile of Tax Payment
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The Model

 V(g) = S + gp - R-1Ez - t R
-1Max[  

 

where R = 1 + r, K = rS + gpR; and Z = gX.  Let P(K,Z) =  

R-1Max[Then

   V(gS + g(p - R-1Ex) - tP(K,Z). (1’) 

Since Z N(Ez,sz),  

  P(K,Z) = R-1 gsx[dN(d) + n(d)], (2) 

where  

  d = 
E ( E )z x

z x

K rS pRg

s gs

  
 . (3) 
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The Model
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2
1

2
n( ) 0.

P rS d
R d

 

g g g

   (5) 

From equations (1’) and (5) we obtain the second-order 
condition (SOC): 

  V”(g) = 2 2( / ) 0.Pt  g     
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The Model

From equations (1’) and (4) we obtain the first-order 
condition (FOC): 

    

after tax marginal underwriting gain marginal tax loss

( )[1 N( )] n( )x xpR E d dt ts



     (6) 

Solving (6) for p:  

   p = R-1{Ex + gsx}, (7) 

where g = 
n( )

0
1 N( )

d

d

t

t



 represents the unit risk loading 

factor; i.e., the loading required per dollar of expected loss 
that compensates the insurer for the tax burden of 
underwriting risk. 
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The Model

 From (7), it is apparent that insurance must be 

actuarially unfair; otherwise, the optimal value for gis 
zero.   

 To see this, suppose insurance is actuarially fair (i.e., p = R
-1
Ex). Then 

n(d) = 0, and d .  Since d = rS/gsx, g = 0; hence, no insurance is 

supplied.   

 For positive values of g, the FOC is satisfied only if 
insurance is actuarially unfair (i.e., if p > R-1Ex).   

 If there are no taxes; i.e., if t= 0, then insurance 
prices are actuarially fair. 
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Brief Tutorial: Implicit Function Theorem

 The implicit function theorem states that given some function F(y, 1 ,x ..., nx ) = 0, 

if an implicit function y = f( 1 ,x ..., nx ) exists, then the partial derivatives of the 

implicit function are 
/

/

i

i

y F x

x F y

  

  
  , for all i, i = 1,...,n.   

 The first-order condition for the present model is Vg (g*, 1 ,x ..., nx )=0, where Vg  

corresponds to the partial derivative of equity value with respect to g, the xi's 

represent model parameters (i.e., p, Ex, r, t, sx and S), and g* = f( 1 ,x ..., nx ) is the 

implicit function.  Therefore, 
* /

/

i

i

V x

x V

g

g

 g

  g
   for all i, i = 1,...,n.   

 Since 2 2/ / 0V Vg g  g  , this implies that the sign of * / ixg   will be the 

same as the sign of 2 / iV x g ; e.g., sign(
2*

/

V

S S

g 

 g 
 ). 
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The Model

Lemma 1:  The optimal insurance supply increases in S, 

p, and r, and decreases in t and sx. 

PROOF:  We show the proof for surplus (S) only. 

Differentiating implicitly from the FOC with respect to g 
and S, 

  
'/ S

S ' '( )

V

V

g  

 g
  . 

Since V”(g) < 0, sign( / S)g   = sign( '/ S)V  .  

'/ SV   = - 2( / )P St  g  = 2 2n( ) / 0.xd r S Rt g s    (8) 

Hence / Sg   > 0.   
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Market Equilibrium

 The market equilibrium condition is written: 

   1j jg  .  (9) 

 From the FOC, the optimal market share g is a 

function of six parameters:  p, Ex, r, t, sx and S.   

 From Lemma 1, using (5) and (8) and the expression 

for V”(g), we obtain: / /S Sg  g ; hence g is linear 

in S.  Therefore, the optimal market share for insurer 

j, g
j, can be written as 

 gj = Sj • h(p, t, sx, Ex, r). 
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Market Equilibrium

 Applying the market equilibrium condition, 

 j jg h• j jS Consequently, h(•) = 1/jSjand 

    gjSj jSjsj , (10) 

where sj represents insurer j’s share of total industry 
surplus.  Equation (10) indicates an optimal sharing rule 
that we formally define in the following proposition: 

Proposition 1:In equilibrium, the share of insurer j in 
the insurance market is equal to its share in 

the industry’s surplus:  gj  = sj. 
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Reinsurance and Efficiency

Let j  represent the jth insurer’s endowed market share, 

and j represent the fraction of the market which 

insurer j reinsures (j j). 

  V() = S + ()(p - R-1Ex)-tP(K,Z), (11) 
 

where K  = rS + ()pR; and Z  = ()X.  From 

(11), all previous results obtain, where gis simply 

replaced by .  Furthermore, the optimal sharing 
rule is 

   j  =  j - sj.  (12) 
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Reinsurance and Efficiency

 Next, consider a special case of (12). Suppose all 
insurers underwrite the same share of the insurance 

market; i.e., if j = 1/m for all j, then we obtain:   

  j = (1/m) - sj.   

Since average surplus /j jS S m   and the average 

surplus share is / j js S S  , 1/s m .  Hence,  

  j  =  js s . 

Thus the proposition: 

Proposition 2: In equilibrium, given , high surplus 
firms reinsure low surplus firms. 
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International Reinsurance and Taxes

• Reinsurers operating in low-tax domiciles 
augment underwriting capacity of local insurers in 
high-tax domiciles.

• Internationally, a significant proportion of 
reinsurance underwriting capacity is in fact 
provided by specialist reinsurers (e.g., off-shore 
captives operating in low-tax domiciles).

• Empirical implication – inverse relationship 
between tax rates and net retention ratios is 
confirmed by Outreville (1994) in a cross-
sectional study of the relation between retention 
rates and corporate tax rates in 42 developing 
countries.
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Surplus and the Equilibrium Rate of Return

• Previously, number of insurers = m 

actuarially unfair price for insurance (see 

(7)).

• What if the number of insurers and 

amount of surplus are endogenous?

• Since insurance is unfair, there is an 

incentive for entry   increase in industry 

surplus!
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Surplus and the Equilibrium Rate of Return

 Let S* = jSj represent the total surplus of the insurance industry.  In Proposition 

1, we noted that S* enters into the equilibrium expression for d: 

   
* Ex

x

rS pR
d

s

 
  (18) 

Substituting p = R-1{Ex + gsx} (see (7)), we obtain: 

   
( )

( , )
1 ( )

x

x

pR E n d
d

N d

t
 t

s t


 


 (19) 

Substituting (19) into (18), we obtain a new equilibrium expression for d: 

   
*

( , ).
x

r S
d d t

s
   (20) 
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Surplus and the Equilibrium Rate of Return
 Next, define E(ri) as the after-tax expected rate of return on capital 

invested in an insurance firm.  By definition, 

  E(ri) =  S-1{RS + g(pR - Ex) - tE[Max(0, K-Z)] - S}. 

 Using (2), (7), (10) and (20), we derive the equilibrium value for E(ri): 

   E(ri) =  r[1 - tN(d)]. (21) 

 
(21) implies that the after-tax expected rate of return on insurance 
equals the after-tax rate of return on the riskless asset, adjusted for 
the probability of paying taxes.   
 

 Since N(d) < 1,  asymmetric taxes reward for idiosyncratic risk 
(equal to the expected tax payment, adjusted for the probability that 

losses are sustained); i.e., E(ri) - r(1-t) = tr(1-N(d)). 
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Surplus and the Equilibrium Rate of Return

 Lemma 2:  The equilibrium value of d is increasing in S* (implying 
thatdE(ri)/dS* < 0) 

PROOF:  From equation (20), taking r, tand sx as given, d is defined by 

an implicit function: 

  
*

*F( , ) ( , ) 0.
x

rS
d S d d t

s
     

When S* increases, the total change in d from one equilibrium state to the 
other is 

  
*

1

*

d F/
(1 ) .

d F/ x

d S r

S d d

  

  s 

     

Since */ 0, d /d 0.d d S         QED. 

 

Proposition 4: Long-run equilibrium obtains when E(ri) = r(1-t); 

idiosyncratic risk is rewarded by an excess return 
depending on the tax rate and on the probability that the 
insurance business generates losses. 

 


