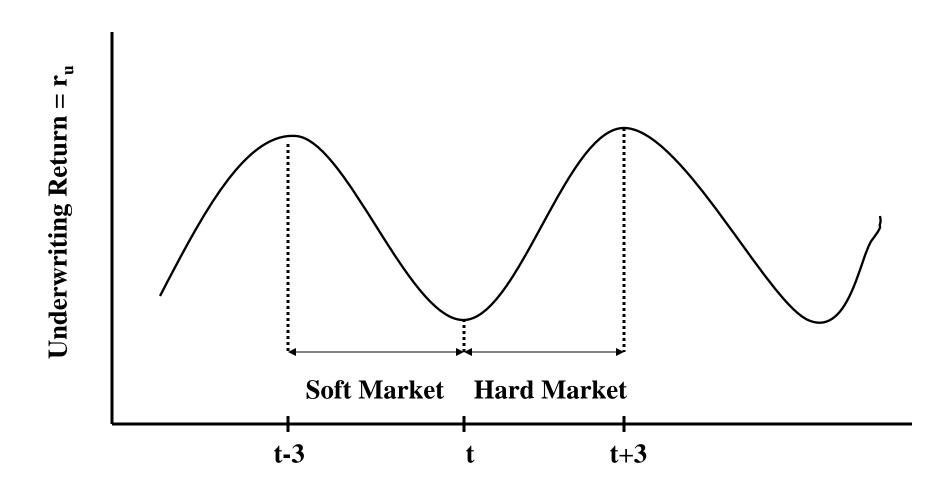
Property-Liability Insurance Underwriting Cycles: An Overview

Based upon "Property-liability Insurance Underwriting Cycles" (Fall 2003), by J. David Cummins*

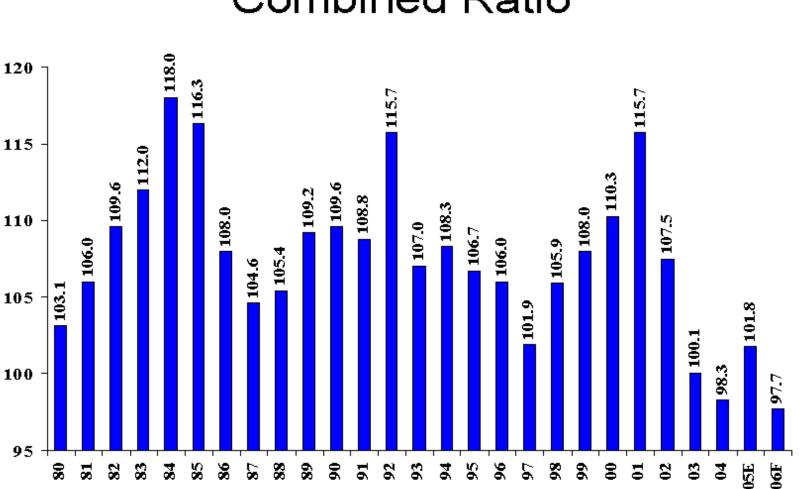
Not to be reproduced without permission.

*This lecture note represents an abridged and (lightly) edited version of a Fall 2003 lecture note by J. David Cummins entitled "Property-Liability Insurance Underwriting Cycles" (Copyright 2003 by J. David Cummins), which was used with his permission.

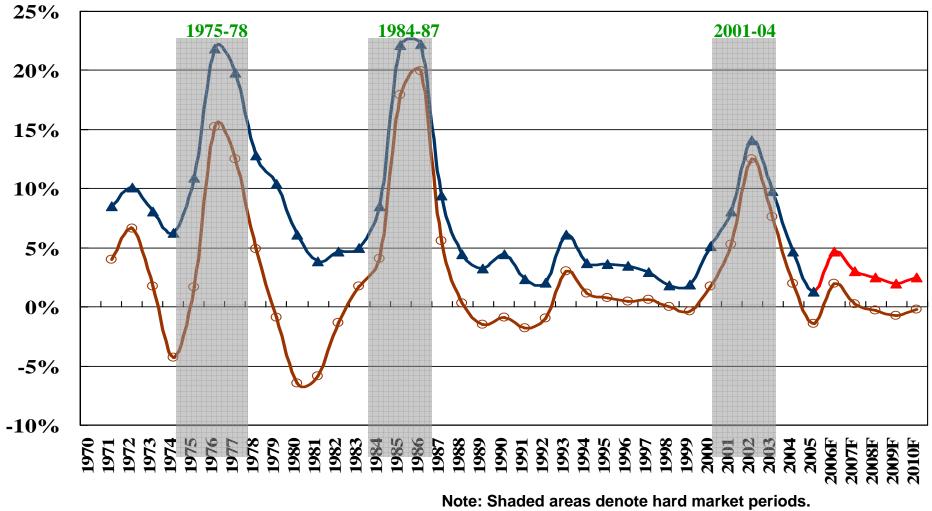

Defining Underwriting Profits

Underwriting profits = Premiums – Losses – Expenses

- r_U = Return on underwriting = Und profits/Premiums = 1 - (Incurred Losses + LAE)/Earned Premiums - Expenses/Written Premiums = 1 - Loss Ratio - Expense Ratio
 - = 1 Combined Ratio


Combined ratio $<1 \Rightarrow r_U > 0 \Rightarrow$ Underwriting Profit Combined ratio $>1 \Rightarrow r_U < 0 \Rightarrow$ Underwriting Loss

Underwriting Cycles: Hard & Soft Markets


Property-Liability Insurance Underwriting Cycles: An Overview

Underwriting Cycles: Hard & Soft Markets

Combined Ratio

Real NWP Growth Rates, 1971-2010

Source: Dr. Robert Hartwig, Insurance Information Institute.

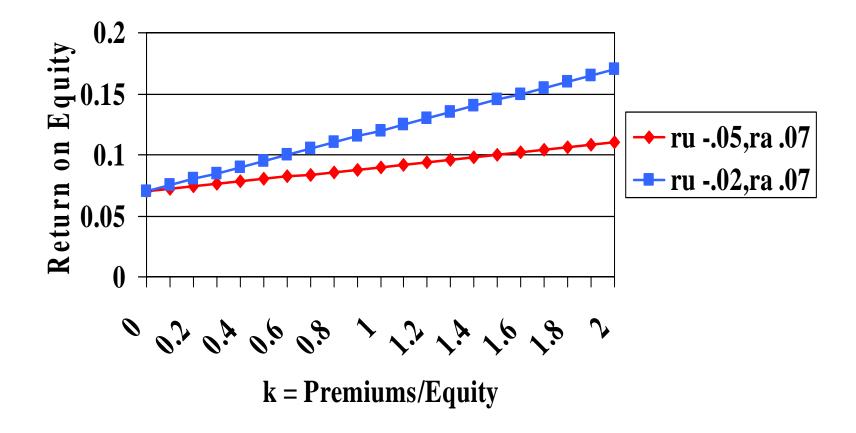
Return on Equity

Net Income = Underwriting Income (UI) + Investment Income (II); :. Return on Equity = Net Income/Equity = UI/Equity + II/Equity = $r_U * (P/E) + r_A * (A/E)$,

where

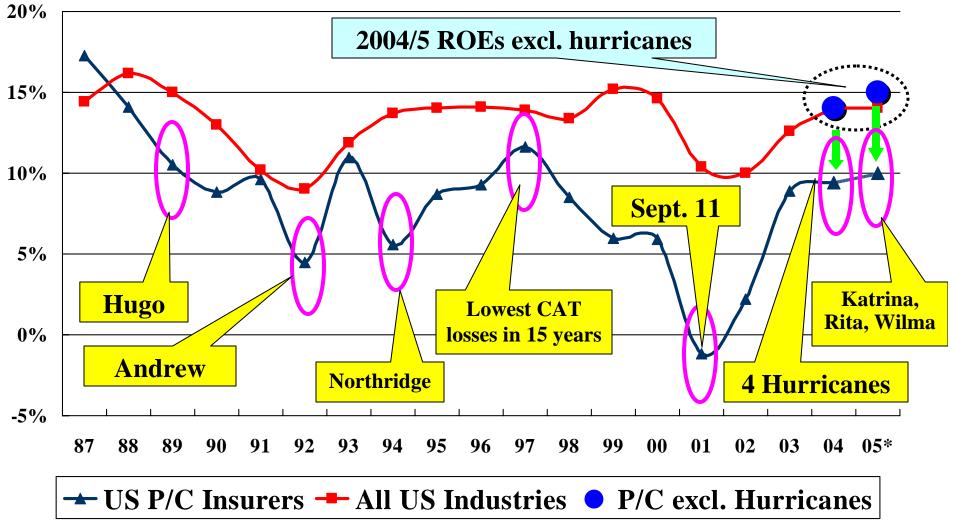
P/E = premium/surplus ratio (insurance leverage), and A/E = assets/surplus ratio (investment leverage).

Further Analysis of ROE


- Return on Equity = $r_U * (P/E) + r_A * (A/E)$
- Define A = P + E and k = P/E; then,

ROE =
$$r_U * k + r_A * (P+E)/E$$

= $r_U * k + r_A * (k+1) = r_A + k*(r_U+r_A)$


- If P = 0 (firm writes no insurance), $ROE = r_A$ and the firm is a mutual fund (Recall that k = P/S).
- If P > 0, $ROE \ge r_A$ as long as $r_U \ge -r_A$

Model of ROE: $re = ra + k^*(ru + ra)$

ROE as Function of Insurance Leverage

ROE: P/C vs. All Industries 1987–2005E

Underwriting Cycles Research Findings

- Losses are not cyclical.
- Cycles primarily come from premium changes triggered by shocks in interest rates, loss costs, and capacity constraints.

Cycle Math

Consider the following equation:

$$\mathbf{r}_{u,t} = \mathbf{a}_0 + \mathbf{a}_1 \mathbf{r}_{u,t-1} + \mathbf{a}_2 \mathbf{r}_{u,t-2} + \boldsymbol{\omega}_t.$$

- An underwriting cycle is present if a₁ > 0, a₂ < 0, and a₁² + 4a₂ < 0;
- The <u>periodicity</u> of the cycle is determined by the equation: Period = $P = 2\pi / a\cos(a_1/2\sqrt{a_2})$; e.g., if $a_1 = 0.9$ and $a_2 = -0.8$, then $a_1^2 + 4a_2 = -2.39 < 0$ and $P = 2\pi / a\cos(0.503115) = 6.2832/1.0436 = 6.021$ years.

Cycle Math

Table 2

AUTOMOBILE INSURANCE LOSS RATIO REGRESSIONS FOR SIX MAJOR NATIONS

	a(0)	a(1)	a(2)	Time	R-SQ	Cycle Period
Canada*	1.297	0.851 5.012	-0.635 3.764	-0.014 3.985	0.78	6.24
France	0.696	0.946 4.802	-0.431 2.612	-0.007 2.955	0.90	8.20
Italy	0.741	1.261 7.619	-0.612 4.016	-0.014 1.320	0.87	9.92
Sweden	0.802	0.816 3.781	-0.397 2.087	-0.001 0.150	0.43	7.26
Switzerland	1.758	0.445 2.219	-0.409 2.242	-0.010 2.522	0.46	5.17
United States	1.347 .	0.735 4.816	-0.653 4.657	-0.007 3.896	0.73	5.72

NOTE: The estimation period is 1957-1979, unless otherwise indicated. The estimation equation is: CR(t) = a(0) + a(1)CR(t-1) + a(2)CR(t-2) + u(t) where CR(t) = the premiums to claims ratio in year t and u(t) = a random error term. All equations were estimated by ordinary least squares. Absolute values of t-statistics appear below coefficients.

*Estimation period for Canada is 1958-1979.

Why are underwriting returns autoregressive?

- Assume that interest rates are 0 and that insurer estimates of E(L) are unbiased; i.e., $L_t = E(L_t) + \epsilon_t$, where ϵ_t is "white noise" (i.e., $\epsilon_t \sim N(0, \sigma_{\epsilon})$ and $E(\epsilon_t \epsilon_{t-i}) = 0$, $i \neq 0$).
- Then underwriting profit is $\Pi_U = P L = E(L) L$ =E(L) - [E(L) + ϵ_t] = - ϵ_t .
- Since underwriting profit is white noise, so is the return on underwriting; i.e., $r_U = \Pi_U / P = -\epsilon_t / P$.
- Therefore, if r_U is empirically observed to be autocorrelated, then insurers either make systematic pricing errors or autocorrelation enters r_U in some other fashion.

What causes underwriting cycles?

- Assuming that insurer estimates of E(L) are on average unbiased, two possible explanations for cycles include:
 - Pricing lags
 - Accounting conventions

Insurance Pricing Lags: Pricing at Time t (end of year t)

- Center of loss data t - 0.5
- Data available to actuaries
- Rates filed with regulator
- Rates approved by regulator
- Average renewal date
- Avg claim under new rates
- Total elapsed time

- t + 0.25
- t + 0.5
- t + 1.0
- t + 1.5
- t + 2.0
- 2.5 years

A Model of Rational Pricing (w/ lags)

Model of loss evolution:

$$\mathbf{L}_{t} = \mathbf{E}(\mathbf{L}_{t}) + \boldsymbol{\epsilon}_{t} + \boldsymbol{\nu}_{t},$$

where

 ϵ_t = "transitory" or unsystematic component of the difference between L_t and E(L_t), and v_t = "permanent" or systematic component of the difference between L_t and E(L_t) (due to lags).

Consequently, $E(L_{t+1}) = E(L_t) + v_t$.

A Model of Rational Pricing (w/ lags)

- Now suppose that various data lags prevent the insurer from observing v_t . Therefore, $P_{t+1} = E(L_{t+1}) = E(L_t)$.
- Next, we compute $\Pi_{U,t+1}$ and $\Pi_{U,t}$:

$$\Pi_{U,t+1} = P_{t+1} - L_{t+1}$$

$$= E(L_t) - [E(L_{t+1}) + \epsilon_{t+1} + \nu_{t+1}]$$

$$= E(L_t) - [E(L_t) + \nu_t + \epsilon_{t+1} + \nu_{t+1}]$$

$$= - (\nu_t + \epsilon_{t+1} + \nu_{t+1})$$

$$\Pi_{U,t} = - (\nu_{t-1} + \epsilon_t + \nu_t)$$

• Therefore,
$$E(\Pi_{U,t+1} \Pi_{U,t}) = E(\nu_t^2) \neq 0.$$

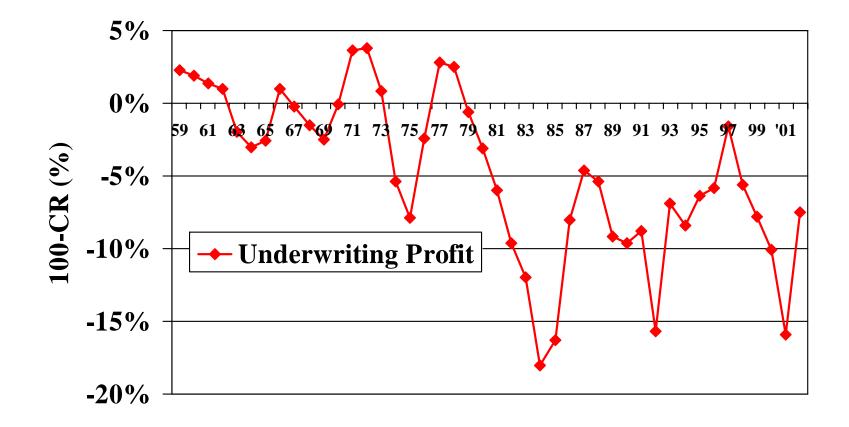
Accounting Averaging: 2nd Order Effect

• Insurance accounting leads to averaging of prices from different time periods, i.e., reported underwriting profits are

$$\Pi^{R}_{U,t+1} = \alpha \Pi_{U,t+1} + (1-\alpha) \Pi_{U,t} = f(\nu_{t-1}, \nu_{t}, \nu_{t+1}).$$

• Thus $\Pi^{R}_{U,t+1}$ will be 2nd order autoregressive, since its value at t+1 depends in part upon the values taken on by 2 of its own lagged random shock terms, ν_{t-1} and ν_{t} .

Implications of Model

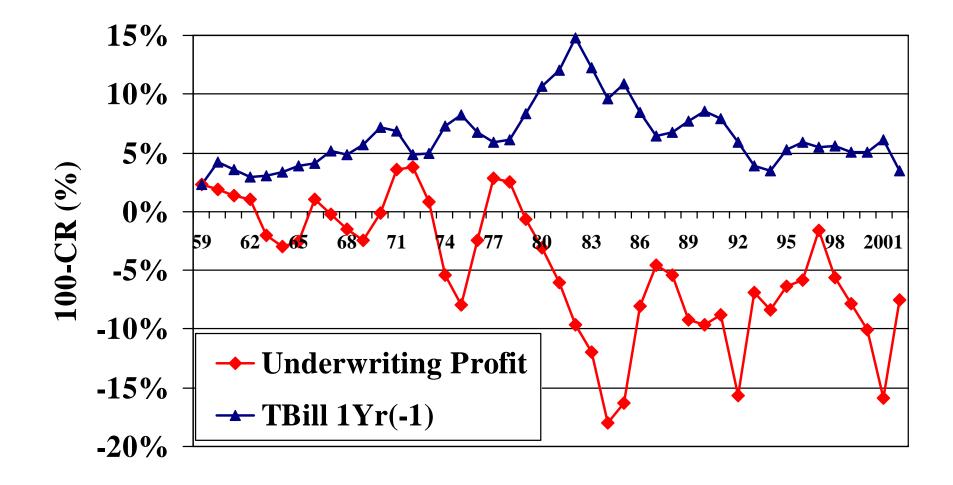

With data lags and accounting averaging,

- Observed r_U will be cyclical, even if insurers price according to rational expectations.
- Therefore, the cycle is at least partly *illusory*.

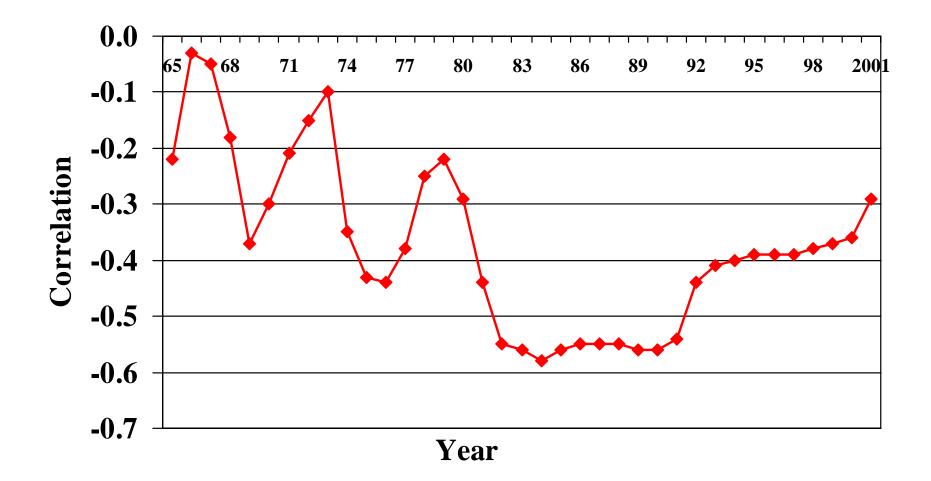
Testable Hypotheses

- The Cummins-Outreville model implies that r_U will be second order autoregressive, even if insurers behave according to the rational expectations model
- Furthermore, virtually all of the financial pricing literature suggests that r_U will be inversely related to interest rates.

The P/L Underwriting Cycle


Underwriting Profit Regressions

UNDERWRITING PROFIT REGRESSIONS								
1961-1980 & 1981-2001								
Method: Le	east Square	es		Method: Le	east Square	es		
Sample: 19	961-1980			Sample: 1981-2001				
Included of	oservations	: 20		Included observations: 21				
Variable	Coefficient	Std. Error	t-Stat	Variable	Coefficient	Std. Error	t-Stat	Prob.
С	-0.55	0.36	-1.54	С	-5.55	2.04	-2.72	0.02
ULOSSL1	0.93	0.14	6.63	ULOSSL1	0.66	0.24	2.69	0.02
ULOSSL2	-0.82	0.14	-5.95	ULOSSL2	-0.25	0.23	-1.10	0.45
R-squared	0.755			R-squared	0.333739			
Adjusted R	0.727			Adjusted R	0.255356			
Conditions	for Cycle:			Conditions	for Cycle:			
a1 > 0		Yes		a1 > 0		Yes		
a2 < 0		Yes		a2 < 0		Yes, not si	gnificant	
a1^2 + 4 a	2 < 0	Yes		a1^2 + 4 a	a1^2 + 4 a2 < 0 Yes			
Cycle Peri	od	6.10		Cycle Peri	od	7.35		


Why the Cycle May Be Lengthening or Vanishing

- Innovations in information technology have reduced data lags over time.
- U.S. insurance markets have become more competitively structured and less regulated over time, thus reducing the magnitude of the other nonstochastic influences listed earlier.

Relationship between r_u and (lagged) r_f

Correlation between Underwriting Returns and (Lagged) T-Bill Yields

Underwriting Profit and Interest Rates: AR(1) Regression: 1961-2001

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	6.542	4.151	1.576	0.146
TBILL(-1)	-0.774	0.372	-2.079	0.044
TIME	-0.311	0.128	-2.436	0.042
AR(1)	0.634	0.140	4.531	0.000
R^2	0.674	Mean DepVar		-5.188
Adj R^2	0.647	S.D. DepVar		5.599

"Real Cycles": Hard and Soft Markets

- Traditional cycle may be partly illusory and lengthening, but hard and soft markets seem to persist.
 - Hard market: Supply of coverage is limited and prices are high.
 - Soft market: Supply of coverage is high and prices are low.

Explanations for Hard/Soft Markets: Supply Side View

- (Naïve) Supply Side View
 - When underwriting profits are high, companies cut prices to gain market share and obtain funds to invest (aka "cash flow underwriting").
 - Prices and profits fall until insurers incur "excessive" underwriting losses and are forced to reduce supply and raise prices.

Supply Side View: How Naïve Is It?

- The supply side view may be consistent with Michael Jensen's "free cash flow" theory.
 - If the firm has sufficient financial slack, managers might be inclined to pursue growth in lieu of paying dividends, even if investments aren't particularly compelling in terms of prospective profitability.
 - Somewhat consistent with supply side cycle explanation; i.e., at the onset of a "soft" market when the insurer enjoys financial slack, its managers pursue premium growth even though the profitability of such a strategy may be questionable.

Supply Side View: How Naïve Is It?

- The supply side view may also be consistent with the Myers-Majluf "pecking order" theory.
 - Since managers are better informed about the firm's investment opportunities than outside investors, they may be reluctant to use external finance due to adverse selection costs in the capital markets.
 - Similar to hard market supply side story where insurers <u>reduce supply</u> rather than <u>raise new</u> <u>capital</u>.

An Alternative (Sophisticated) Supply Side View

- Recall that $ROE = r_A + k^*(r_U + r_A) = r_A + k^*(-r_D + r_A)$.
 - When "net interest margin" $(r_A r_D) > 0$, insurers cut prices (raise r_D) to gain market share and obtain assets to invest (*cash flow underwriting*).
 - Suppose that an unexpected interest rate or underwriting shocks occurs; i.e., Δr_A < 0 or Δr_u < 0. Other things equal, such shocks increase leverage ratios.
 - .: Insurers cut supply (reduce premium writings) and increase prices in order to reduce their insurance leverage to a "more acceptable" level.

Alternative Supply Side View Predictions

- Hard markets follow adverse interest rate and underwriting shocks.
- Soft markets follow favorable interest rate and underwriting shocks.
- Relatively high leverage ratios trigger market turning points (in this case, from a soft to a hard market; low leverage ratios should have the opposite effect).

Underwriting Profit, Interest Rates, and Leverage (Prem/Surplus): 1961-2001

Variable	Coefficient St	td. Error	t-Statistic	Prob.
С	-1.76	3.26	-0.54	0.592
TBILL1	-1.06	0.28	-3.82	0.0005
TIME	-0.17	0.06	-2.74	0.0095
P/S(t-1)	5.47	2.19	2.49	0.0174
R^2	0.568	Mean De	epVar	-5.027
Adj R^2	0.533	S.D. Dep	oVar	5.623

<u>Changes</u> In Und Profit, Interest Rates, and (Prem/Surplus): 1961-2001

Dependent Variable = Log[CRAD/CRAD(-1)]

Variable	Coefficient S	td. Error	t-Statistic	Prob.
С	0.02	0.01	2.41	0.0225
D[TBILL(-1)]	0.06	0.03	2.16	0.0392
D[Surplus(-1)]	-0.27	0.10	-2.68	0.0119
D[Prem/Surp(-1)]	-0.32	0.11	-3.01	0.0054
R^2	0.350	Mean De	epVar	0.004
Adj R^2	0.283	S.D. Dep	oVar	0.037

Discussion of Regression

- Hard markets driven by the follow set of shocks (adverse changes): Δ Investment returns < 0, Δ Underwriting returns < 0 and Δ Leverage ratios > 0.
- Results
 - Increases in P/S ratio inversely related to combined ratio change more leverage reduces combined ratio, supporting supply side view.
 - Increases in equity inversely related to combined ratio change – more equity reduces combined ratio, contrary to supply side view.
 - Conclusion <u>mixed</u> evidence regarding the predictions of supply-side interpretation of cycle.