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Professor Information

• I hold appointments at Baylor University 

as the Frank S. Groner Memorial Chair 

of Finance and Professor of Finance and 

Insurance, and at the Wharton School as 

a Visiting Scholar. 

• Previous faculty appointments at 

Pennsylvania State University, University 

of Texas-Austin, and Louisiana State 

University Business Schools
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Professor Information

• Research: corporate risk management 
and “insurance finance”

• Service: 

• Editorial Boards: Geneva Risk and Insurance 
Review and Journal of Risk and Insurance

• Academic Associations:

• President of American Risk and Insurance 
Association (ARIA).

• Past President of Risk Theory Society (RTS)
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Convergence of Finance and Insurance

• Convergence between finance and risk 

management & insurance has been 

occurring for some time now, in practice 

as well as in theory. 

• As The Economist has famously noted, 

“The business of financing companies is 

converging with the business of insuring 

them.”
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• Loubergé (2013) notes that the development 

of risk and insurance economics has 

involved “…the applications of new 

financial paradigms, such as contingent 

claims analysis, to the analysis of insurance 

firms, insurance markets, and corporate risk 

management, a development which links 

more closely insurance economics to 

financial economics, and insurance to 

finance.”

Convergence of Finance and Insurance
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Topics Covered in this Course

• Insurance Economics (Lecture 1)

• Financial Pricing Models and Capital 

Allocation (Lectures 2-3)

• Corporate Risk Management (Lecture 4)

• Reinsurance (Lecture 5)
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Why a lecture on insurance economics?

• Insurance economics provides a set of models 

that help us to better understand behavior 

towards risk; e.g.,

• How do alternative contract designs (involving 

different combinations of linear and non-linear 

payoffs) affect the pricing and sharing of risk?

• How does risk sharing affect incentives?

• Although many examples focus on insurance 

problems, the underlying principles have 

broad application outside of insurance per se.
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Topics Covered in Lecture 1

• Insurance supply: risk pooling, risk 

spreading, and risk transfer 

mechanisms

• A simple “single risk” model of the 

demand for insurance

• Endogenous “background” risks

• Moral Hazard 

• Adverse Selection
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For Future Reference!

• Schlesinger, H., 2013, “The Theory of Insurance 

Demand,” Chapter 7 in G. Dionne, editor, Handbook of 

Insurance (2nd edition, Boston: Kluwer Academic 

Publishers).

• Winter, R. A., 2013, "Optimal Insurance Contracts 

Under Moral Hazard,” Chapter 9 in G. Dionne, editor, 

Handbook of Insurance (2nd edition, Boston: Kluwer 

Academic Publishers).

• Dionne, G., Fombaron, N., and N. Doherty, 2013, 

“Adverse Selection in Insurance Contracting,” Chapter 

10 in G. Dionne, editor, Handbook of Insurance (2nd

edition, Boston: Kluwer Academic Publishers).
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Risk Pooling

Let E(Li) = expected loss for insured i and 
1
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   = 

total expected loss of the risk pool.  Then  

     E(Lp) = wE Li i
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     = average loss per policy, 

where wi = E(Li)/E(LT).  Similarly, 
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     = average risk per policy, where 

ij = i /ij = correlation between losses on policy i and policy j. 
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Risk Pooling

 Let losses be identically distributed; i.e., E(Li) = 
 

and wi = 1/n for all insureds, while  2
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 if 
.ij i j i j

i j



  



  

Therefore, (1) and (2) are rewritten 
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Risk Pooling

 Since 
2

2 21
pL

n

n n


 


  , 2 2lim ;

pL
n

 


  i.e., 

only covariance risk remains. 
 

 Now suppose losses are iid.  Then 2lim 0.
pL

n



  Thus 

the average loss becomes more predictable as the 
number of risks pooled becomes large. 

 

o By pooling many independent risks, insurers 
can treat uncertain losses as almost known. 

o Risk pooling effectively defrays risk by 
exploiting the law of large numbers. 
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Risk Pooling and Insolvency

 Assume that losses are normal and iid, where total 

losses LT = 
1

n

i

i

L


 , E(LT) = 
1

( )
n

i

i

E L


  = n and 

2

TL = n 2 .   

 Suppose we want the pool to be able to pay losses 

with some level of certainty; i.e., Pr(LT < nS) = p,  
where p represents our threshold insolvency 
probability and S represents the insurer’s surplus. 

 Standardizing the normal random variable, we obtain 

Pr .
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Risk Pooling and Pricing

  
 The level of surplus S that will produce a solvency rate of p is .

TLS    

 Total risk pool premium is TP = n
TL = n n  . 

 

 the premium per policyholder is 
pure premium

risk loading

.iP
n


   
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Risk Spreading

 Risk pooling “breaks down” when risks are not 

independent; note that 
2

2 21
lim
n

n

n n


 




  ; if 

= 1, then 2 2

pL  . 

o Catastrophic risks come to mind (e.g., earthquakes, 
floods, cyclones, RBNC terrorist events, nuclear war, 
etc.) such risks are (to some extent) nondiversifiable. 

o This helps to explain some of the “fine print” in 
insurance contracts; e.g., catastrophe exclusions. 
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Risk Spreading

• Catastrophe risks are often managed by some 

combination of ex ante and ex post risk spreading 

by government.

• In theory, risk spreading may improve social welfare, even 

though the total amount of risk is not diminished.

• However, this is Pareto inefficient, since it is not possible to 

improve catastrophe victims’ welfare without reducing the 

welfare of non-victims.

• Recent innovations in alternative risk transfer (e.g., act 

of God bonds, terrorism bonds, etc.) represent private 

sector attempts to manage catastrophe risk using 

capital market instruments.
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The Demand for Insurance

• An individual has wealth W0 and will suffer a loss L with 

probability .  Thus she owns the lottery (W0 - L, 

W0,,1-).  

• She can take out insurance, in which case she must pay a 
premium P = pC, where p is the premium rate and C is 
the level of coverage.   

• Thus this individual may exchange the lottery she owns 
for the “insurance” lottery  

(W0 – pC – L + C, W0 – pC,,1-). 
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• Consider a special case of the insurance lottery, where C 
= L; i.e., risk is fully insured.  With full insurance, state 
contingent wealth is W0 – pC regardless of whether a 
state contingent loss occurs; thus under full insurance, 
she (the consumer) exchanges an uncertain loss (L) for a 
certain loss (pC). 

• She will buy insurance only if a C exists such that the 
expected utility of being insured exceeds the expected 
utility of remaining uninsured; i.e.,  

U(W0–pC–L+C) + (1-U(W0–pC) > 

U(W0–L) + (1-U(W0). 

The Demand for Insurance
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• The optimal level of insurance coverage is determined by 
maximizing expected utility; i.e., by finding the value of C at 
which the following equation is maximized:  

0 0( ( )) ( (1 ) )  (1 ) ( ).E U W U W L p C U W pC         

• In order to maximize expected utility, we must solve the first 
order condition: 

0 0(1 ) '( (1 ) ) = (1 ) '( ).p U W L p C p U W pC        

• Bernoulli principle: Suppose p = Then  

0 0

0 0

'( ) = '( )U W pC L C U W pC

W pC L C W pC

   

     
 

i.e., if the insurance premium is actuarially fair, then full coverage 
(C = L) is optimal. 

The Demand for Insurance
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The Demand for Insurance

• Now suppose U(W) = ln W. 

• The first order condition implies that 

0 0

(1 ) (1 )
.

(1 )

p p

W L p C W pC

  


   
 

• Solving for C, we find that 

0( 1) ( )
.

( 1)

pL p W
C

p p

   



 

• Bernoulli Principle: Suppose p = ; i.e., insurance is actuarially 

fair.  Then 
( 1)

;
( 1)

Lp p
C L

p p


 


 i.e., it is optimal to fully insure. 
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Effect of Changes in Initial Wealth

 First, consider the effect of changes in initial wealth on the 
demand for insurance; this is analyzed by differentiating C 

=   
1

0( 1) ( 1) ( )p p Lp W p 


     with respect to W0, 

resulting in the following expression: 

   
1

0
0,

( 1) 0.
C

p p p
W




 


   


 

 If insurance is actuarially fair; i.e., p=, then 0/C W  =0. 

o To be expected, since p= implies full coverage (C=L) 
irrespective of one’s level of initial wealth W0. 

 If insurance is unfair; i.e., p>, then there is an inverse 
relationship between C and W0, since the product of a negative 
first term multiplied by a positive second term is negative. 
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Effect of Changes in Loss Frequency

 Next, we study the effect that a change in loss frequency has 
upon the optimal value for C; this is analyzed by 

differentiating C =    
1

0( 1) ( 1) ( )p p Lp W p 


     

with respect to : 

   
1

0( 1) 0
C

p p Lp W




 


   


. 

 Since the consumer cannot spend more than initial wealth 
on insurance, 0Lp W < 0.   

 Consequently, there is a positive relationship between C and 

; i.e., the demand for insurance is higher, the higher the 
loss frequency.  
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Effect of Changes in Loss Severity

 Next, we study the effect that a change in loss severity 
has upon the optimal value for C by differentiating C 

=    
1

0( 1) ( 1) ( )p p Lp W p 


     with respect to 

L: 

   
1 1( 1) ( 1) ( 1) ( 1) 0.

C
p p p p

L
 

 

 


      


 

 Consequently, there is a positive relationship between 
C and L; i.e., the demand for insurance is higher, the 
higher the accident severity.  
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Effect of Changes in the Premium

 Next, we study how a change in the insurance premium affects 
the optimal value for C; this is analyzed by differentiating 

   
1

0( 1) ( 1) ( )C p p Lp W p 


      with respect to p: 

2 2

0 0 0

2 2

2 ( ) ( )
.

( 1)

C p W Lp W p W L

p p p

     


 
 

 A priori, we expect that the demand for insurance will be inversely 
related to the insurance premium. 
o Clearly, the denominator is positive.  

o In the numerator, the first term is positive whereas the 
second and third terms are both negative.  

o Hoy and Robson (1981 Economics Letters) have shown that 
insurance cannot be Giffen if the coefficient of relative risk 

aversion is therefore, / 0.C p    
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Important Insurance Theorems

• Mossin’s Theorem: If proportional 

insurance is available for an actuarially fair 

(unfair) premium, then full (partial) 

coverage is optimal. 

• Arrow’s Theorem: Other things (i.e., 

premium and expected indemnity value) 

equal, risk-averse agents prefer insurance 

policies with deductibles over all other 

contract forms.
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 Suppose initial wealth (W0) is $120, $100 of which is 
invested in an asset that has a 25% probability of 
being destroyed by fire.  U(W) = W.5, and the 
premium for a “full coverage” insurance policy is 
$25.   

 25% of the time, Ws = W0 – Pi  - (1-)L, where  is 
the coinsurance rate and Pi is the price of full 

insurance coverage.  Thus Ws = 120 –  - (1-)100 

= 20 + 75. 

 75% of the time, Ws = W0 – Pi  = 120 – 25. 

Mossin’s Theorem
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Expected utility is E(U(W)) = .25(20 + 75).5  + .75(120 – 

25).5.  The optimal value for maximizes expected 
utility; therefore, 

.5 .5

.5 .5

( ( ))
9.375(20 75 ) 9.375(120 25 ) 0.

(20 75 ) (120 25 )

20 75 120 25

100 100 1.

dE U W

d
 



 

 

 

 

 

    

   

   

   

 

In other words, full coverage is optimal when insurance is 
actuarially fair. 

Mossin’s Theorem
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 Next, suppose that the price of a full coverage policy is 

$40.  Calculate the optimal value for   

This price change implies that E(U(W)) = .25(20 + 

60).5  + .75(120 – 40).5; therefore,   

.5 .5

.5 .5

( ( ))
7.5(20 60 ) 15(120 40 ) 0.

7.5(120 40 ) 15(20 60 )

56.25(120 40 ) 225(20 60 )

6,750 2, 250 4,500 13,500

2, 250 15,750 1/7.

dE U W

d
 



 

 

 

 

     

   

   

   

   

 

Mossin’s Theorem
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Mossin’s Theorem
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Arrow’s Theorem

• "If an insurance company is willing to 

offer any insurance policy against loss 

desired by the buyer at a premium 

which depends only on the policy's 

actuarial value, then the policy chosen 

by a risk-averting buyer will take the 

form of 100 per cent coverage above a 

deductible minimum."
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Arrow’s Theorem

• Proof: Consider the following insurance policies:  

• A “deductible” policy with deductible d. In the event 
of a claim, the indemnity I(L,d) is of the form I(L,d) = 
Max(L – d, 0); and 

• A “general” policy which pays indemnity I(L), where 
0 ≤ I(L) ≤ L. 

• The deductible policy will be preferred to the general 
policy if the following condition holds: 

 
 

 

0

0

( ( ))

( ( ,0)) . (12)

E U W L I L

E U W L Max L d

 

   
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Arrow’s Theorem

Note that a concave curve is located below its tangents; i.e.,  

  ( ) ( ) '( )( ). (13)U y U x U x y x  

 

Figure 1. Graphical Illustration of Inequality (13). 
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Arrow’s Theorem

 Let 0 ( )y W L I L   and 

0 ( ,0).x W L Max L d     Then (13) implies (14): 

 

 
0 0( ( )) ( ( , 0))

'( )( ( ) ( , 0)). (14)

U W L I L U W L Max L d

U x I L Max L d

     

  
 

 Since both policies have the same actuarial value, this 

implies  ( ( ) ( , 0))E I L Max L d  = 0; thus 

     0 0( ( ( ))) ( ( ( , 0))).E U W L I L E U W L Max L d  
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Insurance Indemnities & Premiums

Upper

Self Full Deductible Coinsurance Limit

p(s) L(s) Insurance Insurance $20 75% $100

50% $0 $0 $0 $0 $0 $0

10% $20 $0 $20 $0 $15 $20

20% $40 $0 $40 $20 $30 $40

10% $100 $0 $100 $80 $75 $100

10% $200 $0 $200 $180 $150 $100

E(·) $40 $0 $40 $30 $30 $30

Premium $0 $48 $36 $36 $36
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Final Wealth Distributions

Upper

Self Full Deductible Coinsurance Limit

p(s) L(s) Insurance Insurance $20 75% $100

50% $0 $260 $212 $224 $224 $224

10% $20 $240 $212 $204 $219 $224

20% $40 $220 $212 $204 $214 $224

10% $100 $160 $212 $204 $199 $224

10% $200 $60 $212 $204 $174 $124

E(·) $40 $220 $212 $214 $214 $214

 61.32 61.32 0.00 10.00 15.33 30.00
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Expected Utility Calculations

Upper

Self Full Deductible Coinsurance Limit

p(s) L(s) Insurance Insurance $20 75% $100

0.50 0.00 16.1245 14.5602 14.9666 14.9666 14.9666

0.10 20.00 15.4919 14.5602 14.2829 14.7986 14.9666

0.20 40.00 14.8324 14.5602 14.2829 14.6287 14.9666

0.10 100.00 12.6491 14.5602 14.2829 14.1067 14.9666

0.10 200.00 7.7460 14.5602 14.2829 13.1909 11.1355

Expected Utility 14.6174 14.5602 14.6247 14.6187 14.5835
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Optimal Deductible

 Next, we show that the optimal deductible must be nonzero 
if the premium includes a nonzero proportional loading 
factor.   

 Retrace previous analysis; initial wealth = W0, = loss 
probability, and premium (1 ) ( )P L d    . 

 Uninsured lottery → (W0 - L, W0, insurance 

lottery → (W0 – P – d, W0 – P 

 
0Maximand max ( ( )) ( (1 ) ( ) ) 

d
E U W U W L d d         

0 (1 ) ( (1 ) ( )). (15)U W L d      
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Optimal Deductible

  0FOC:  (1 ) (1 ) (1 ) ( )' L dU W       

 0       (1 (1 (1 ) ( ))) ' . (16)U W d dL       

 

 Suppose 0.   Then  

    0 0' ' , (17)( ) ( )U W U WL d L d d       

 i.e., d = 0 (Bernoulli Principle).  

 Now suppose 0;   then d > 0.  If d is not positive, then 
(16) does not obtain! 
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Optimal Deductible

 Suppose U = ln W.  Then the first order condition is 
 

   

0 0

1 (1 )1 (1 )
(18)

(1 )( ) (1 )( )W L d W L d d

    

   

  


      

 

 

 Solving for d, we obtain 

 

 
0(1 )

. (19)
(1 ) (1 ) 1

L W
d

  

  

 


  
 

 Since the signs of both the numerator and denominator are 

negative for > 0, this implies d> 0 with actuarially unfair 

premiums (also note that = 0  d= 0).  
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Comparative Statics

 0 0

2 2

( 1) ( )
0;

(1 ) ( (1 ) 1)

W L Wd  

   

 
  

   
 i.e., the optimal 

deductible is positively related to the premium loading, 

 
 0

2
0;

( (1 ) 1)

W Ld 

  


 

  
 i.e., the optimal deductible is 

positively related to loss frequency, 

 
   0

0;
1 (1 ) 1

d

W



  


 

   
 i.e., the optimal deductible 

is positively related to the level of initial wealth, and 

 
 

0;
(1 ) 1

d

L



 


 

  
 i.e., the optimal deductible is 

inversely related to loss severity. 
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Moral Hazard

• "Hidden Action" problem

• Moral hazard is the risk that a party to 

a contract will subsequently deviate 

from the terms of the contract.

• Moral hazard is thus a problem 

created by information asymmetry 

after the transaction occurs.
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Moral Hazard

In the absence of insurance, expected wealth (E(W)) is written as  
 
 0( ) ( ) ( )E W W c s p s L   . (1) 

 
Next, we maximize E(W) by differentiating (1) with respect to s and solving 
for the value of s* that causes the resulting equation to be equal to zero: 

 

 
( )

'( *) '( *) 0
dE W

c s p s L
ds

    . (2) 

Rearranging (2), we obtain a very familiar result; the optimal level of safety 
occurs when the marginal cost of safety (c’(s*)) is equal to the marginal 
benefit of safety   (-p’(s*)L); i.e.,  

 

Marginal Cost Marginal Benefit

'( *) '( *)c s p s L  . (3) 
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Next, we introduce insurance in which the insurer covers the proportion 

of the risk for a premium of $P.  Thus expected wealth is 
 

 0( ) ( ) (1 ) ( )E W W c s p s L P      ,  (4) 
 

and s* is determined by the following equation: 
 

 
( )

'( *) (1 ) '( *) 0
dE W

c s p s L
ds

     ; consequently,  (5) 

 
Marginal Cost Marginal Benefit

'( *) (1 ) '( *)c s p s L   .  (6) 

Since coinsurance proportionately scales down the marginal benefit of 

safety, s* is lower when insurance is purchased.  If =1, then there is no 
benefit to investing in safety; consequently, the optimal value for s* is s*= 0. 
Herein lies the moral hazard problem. 

Moral Hazard
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Moral Hazard
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The solution to this dilemma is for the insurer to make the premium itself 
a function of the level of investment in safety.  In other words, let P = P(s), 
where P’(s)<0. Thus (4) is rewritten as:  

 0( ) ( ) (1 ) ( ) ( )E W W c s p s L P s      , (7) 

and s* is determined by the following equation: 

 
( )

'( *) (1 ) '( *) '( *) 0
dE W

c s p s L P s
ds

      . (8) 

Thus the equilibrium condition of marginal cost equaling marginal benefit 
is written as follows: 

 
Marginal Cost Marginal Benefit

'( *) ( ) '( *) '( )c s p s L P s    1 . (9) 

In (9), even when =1, it will be optimal to invest in safety, since the 
premium charged is sensitive to the level of investment in safety. 

Moral Hazard
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Moral Hazard
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Moral Hazard

• Risk transfer creates moral hazard

• Contractual and pricing strategies 

for mitigating moral hazard:

• Risk sharing (partial insurance)

• Experience rating
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• "Hidden Information" problem

• Adverse selection is the risk that the 

party who wants to enter into a contract 

agreement with you is most likely to 

produce an undesirable outcome.  

• Adverse selection is the problem created 

by information asymmetry before the 

transaction occurs. 

Adverse Selection
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Adverse Selection

• Examples of adverse selection

• Insurers know less about the true risk 

characteristics of their policyholders than 

the policyholders themselves.

• When a firm hires a worker, it knows less 

than the worker about his abilities.

• The seller of a used car has more 

information about the car than the potential 

buyers.
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Adverse Selection in Insurance

• Two states of the world (loss and no loss), and two driver 
types (high accident probability (pH = 75%) and low 
accident probability (pL = 25%)).

• Otherwise, drivers are identical in all respects; W0 = $125 
and L = $100.  Thus if there are no transactions costs, 

E(WL) = W0-E(LL) = $125-.25($100) = $100 for low risk 
drivers, and 

E(WH) = W0 -E(LH) = $125-.75($100) = $50 for high risk 
drivers. 

• With premiums set at the expected value of loss for each 
insured ($25 for low risk drivers and $75 for high risk 
drivers), the Bernoulli principle implies that each would 
fully insure. 
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Adverse Selection in Insurance

• Suppose that we cannot identify the low and high risk 

drivers.  However, we do know that there are equal 

numbers of low and high risk drivers.  What to do?

• One possibility - Charge an average premium of $50.  

What's wrong with this strategy?

• High risk drivers now receive even more utility from 

insuring.  However, low risk drivers cancel their 

policies because the expected utility of being uninsured 

is higher than the expected utility of being insured. 

• Consequently, the insurer is stuck with a portfolio of 

high-risk drivers and an inadequate premium.
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Adverse Selection in Insurance
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Figure 4.  Rothschild Stiglitz Separating Equilibrium

Adverse Selection Limits Insurability!
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Practical Implications of Rothschild-Stiglitz

• The Rothschild-Stiglitz "separating 

equilibrium" model shows that an insurer can 

mitigate adverse selection by limiting the set of 

contract choices offered to consumers.

• In the "real world", insurers anticipate that bad 

risks will select lower deductibles than good risks; 

consequently, insurers adjust low deductible 

insurance policy premiums to reflect the 

anticipated cost of adverse selection.

• Therefore, one who is a good risk ought to select 

high deductible insurance policies!


