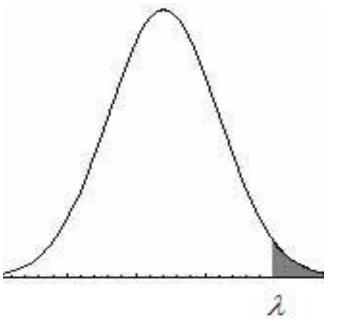
Markets for Risk Management

Financial Pricing Models (Part 1)

"Price Regulation in Property-Liability Insurance: A Contingent Claims Approach" Neil A. Doherty and James R. Garven 1986 *Journal of Finance*

Copyright J. R. Garven. Not to be reproduced without permission.

Actuarial ("ruin theory") pricing model



- The level of surplus *S* that will produce an insolvency rate of *p* is $S = \lambda \sigma_{L_T}$.
- Total risk pool premium is $P_T = n\mu + \lambda \sigma_{L_T} = n\mu + \lambda \sqrt{n\sigma}$.

• \therefore the premium per policyholder is $P_i = \mu + \frac{\lambda \sigma}{\sqrt{n}}$.

risk loading

Financial Pricing Models (Part 1)

Page 2

Valuation Relationships for a Property-Liability Insurer

• Beginning of period cash flow:

$$Y_0 = S_0 + P_0. (1)$$

• End of period cash flow:

$$\tilde{Y}_1 = S_0 + P_0 + (S_0 + kP_0)\tilde{r}_i.$$
(2)

• In (2), *k* is the "funds generating coefficient"; measure of the average claim delay

Basic Valuation Relationships for a Property-Liability Insurer

• Y_1 is allocated to policyholders (H_1) , government (T_1) , and shareholders $(Y_1 - (H_1 + T_1))$.

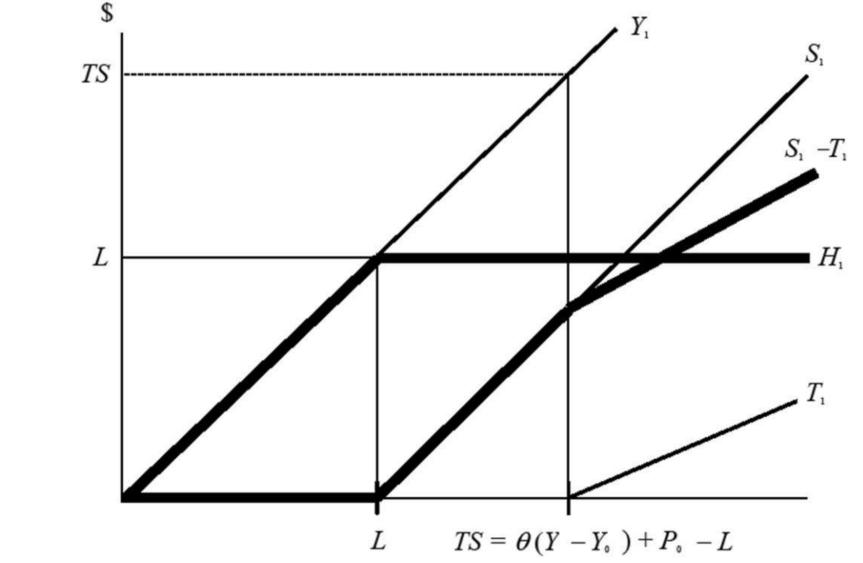
$$\tilde{H}_{1} = \tilde{Y}_{1} - Max[\tilde{Y}_{1} - \tilde{L}, 0] = \tilde{L} - Max[\tilde{L} - \tilde{Y}_{1}, 0]$$
(3*a*)

$$\tilde{T}_1 = \max[\tau(\theta(\tilde{Y}_1 - Y_0) + P_0 - \tilde{L}), 0],$$
(4)

$$H_0 = V(\tilde{Y}_1) - C(\tilde{Y}_1; \tilde{L})$$
(5)

$$T_0 = \tau C[\theta(\tilde{Y}_1 - Y_0) + P_0; \tilde{L}],$$
(6)

Basic Valuation Relationships for a Property-Liability Insurer



Financial Pricing Models (Part 1)

Basic Valuation Relationships for a Property-Liability Insurer

•Value of shareholders' claim V_e , is given by (7):

$$V_{e} = V(\tilde{Y}_{1}) - [H_{0} + T_{0}]$$

= $C[\tilde{Y}_{1}; \tilde{L}] - \tau C[\theta(\tilde{Y}_{1} - Y_{0}) + P_{0}; \tilde{L}]$
= $C_{1} - \tau C_{2}.$ (7)

•Fair return \Rightarrow NPV of investment in insurance = 0.

$$V_e = C[\tilde{Y}_1(P_0^*); \tilde{L}] - \tau C[\theta(\tilde{Y}_1(P_0^*) - Y_0(P_0^*)) + P_0^*; \tilde{L}]$$

= $C_1^* - \tau C_2^*$
= $S_0.$

Financial Pricing Models (Part 1)

(8)

Fair Return (CAPM)

$$V_e = R_f^{-1} \int_{-\infty}^{\infty} \tilde{Y}_e \hat{f}(\tilde{Y}_e) d\tilde{Y}_e$$
$$= R_f^{-1} \hat{E}(\tilde{Y}_e), \qquad (9)$$

where

 \tilde{Y}_e = random cash flow accruing to shareholders at the end of the period; $\hat{f}(\tilde{Y}_e)$ = "risk-neutral" normal density function; $\hat{E}(\tilde{Y}_e)$ = the certainty-equivalent expectation of \tilde{Y}_e $= E(\tilde{Y}_e) - \lambda \operatorname{cov}(\tilde{Y}_e, \tilde{r}_m);$ λ = the market price of risk $= [E(\tilde{r}_m) - r_f]/\sigma_m^2;$ $\operatorname{cov}(\cdot)$ = the covariance operator.

Back to Fair Return (CAPM)

$$\hat{E}(\tilde{Y}_e) = S_0 + (1 - \theta\tau)\hat{E}(\tilde{r}_i)(S_0 + kP_0) + (1 - \tau)(P_0 - \hat{E}(\tilde{L})), \quad (10)$$

where

 $\hat{E}(\tilde{r}_i)$ = the certainty-equivalent expectation of rate of return on the insurer's investment portfolio = $E(\tilde{r}_i) - \lambda \operatorname{cov}(\tilde{r}_i, \tilde{r}_m) = r_f;$ $\hat{E}(\tilde{L})$ = certainty-equivalent expectation of total claims costs

$$= E(L) - \lambda \operatorname{cov}(L, \tilde{r}_m).$$

$$P_0 = \frac{E(\tilde{L})}{(1 - E(\tilde{r}_u))},$$
(11)

where

$$E(\tilde{r}_{u}) = [P_{0} - E(\tilde{L})]/P_{0}$$

= $-\frac{(1 - \theta\tau)}{(1 - \tau)} kr_{f} + (V_{e}/P_{0}) \frac{\theta\tau}{(1 - \tau)} r_{f} + \lambda \operatorname{cov}(\tilde{r}_{u}, \tilde{r}_{m}).$ (11a)

Financial Pricing Models (Part 1)

Some Special Cases

$$E(\tilde{r}_u) = -\frac{(1-\theta\tau)}{(1-\tau)} kr_f + (V_e/P_0) \frac{\theta\tau}{(1-\tau)} r_f + \lambda \operatorname{cov}(\tilde{r}_u, \tilde{r}_m).$$
(11a)

- <u>Case 1</u>: No taxes or insolvency, zero-beta liabilities, k = 1; then $E(r_u) = -r_f$.
 - Implication: on average, insurer should lose money on underwriting.
- <u>Case 2</u>: Claim delays and correlated risks; then $E(r_u) = -kr_f + \beta_u [E(r_m) - r_f]$. claim
 - Insurer compensates the policyholder for delay, and there is a "risk load" for covariance risk.

Fair Return (CARA/Normal OPM)

- Value the call options (C₁ and C₂) described in equation (7) and solve for the implied fair premium (equation (8).
- First, solve for C_1 (Case 1: Joint Normality and Constant Absolute Risk Aversion). $C_1 = C[\tilde{Y}_1; \tilde{L}]$

$$= R_{f}^{-1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \max[(\tilde{Y}_{1} - \tilde{L}), 0] \hat{f}(\tilde{Y}_{1}, \tilde{L}) d\tilde{Y}_{1} d\tilde{L}, \qquad (12)$$

where $\hat{f}(\tilde{Y}_1, \tilde{L})$ is the bivariate risk-neutral density function governing the realization of the normal variates \tilde{Y}_1 and \tilde{L} .

Fair Return (CARA/Normal OPM)

Next, we simplify equation (12) by defining a normal variate $X = Y_1 - \hat{L}$, with certainty-equivalent expectation $\hat{E}(\tilde{X}) = \hat{E}(\tilde{Y}_1) - \hat{E}(\tilde{L}) = S_0 + (S_0 + kP_0)r_f + P_0 - \hat{E}(\tilde{L})$, and variance $\sigma_x^2 = (S_0 + kP_0)^2 \sigma_i^2 + \sigma_L^2 - 2(S_0 + kP_0) \operatorname{cov}(\tilde{L}, \tilde{r}_i)$.

$$C_1 = R_f^{-1} \int_0^\infty \tilde{X} \hat{f}(\tilde{X}) \, d\tilde{X}. \tag{13}$$

Since \tilde{X} is normally distributed, equation (13) may be rewritten in terms of the standard normal variate $\tilde{z} = (\tilde{X} - \hat{E}(\tilde{X}))/\sigma_x$; hence,

$$C_1 = R_f^{-1} (2\pi)^{-1/2} \int_{-\hat{E}(\tilde{X})/\sigma_x}^{\infty} [\hat{E}(\tilde{X}) + \sigma_x \tilde{z}] e^{-\tilde{z}^{2/2}} d\tilde{z}.$$
 (14)

The solution for equation (14) is (15):

$$C_1 = R_f^{-1}(\hat{E}(\hat{X})N[\hat{E}(\hat{X})/\sigma_x] + \sigma_x n[\hat{E}(\hat{X})/\sigma_x]), \qquad (15)$$

Partial Moment Mathematics

• Winkler, Roodman, and Britney (1972 *Management Science*) show that the nth partial moment of a normally distributed random variable is written

$$\begin{split} E_{-\infty}^{z}(X^{n}) &= -\sigma^{2} z^{n-1} f(z) + (n-1)\sigma^{2} E_{-\infty}^{z}(X^{n-2}) + \mu E_{-\infty}^{z}(X^{n-1}). \\ \text{Suppose } n = 1. \text{ Then } E_{-\infty}^{z}(X) &= -\sigma^{2} f(z) + \mu F(z). \text{ Also,} \\ E_{z}^{\infty}(X) &= \sigma^{2} f(z) + \mu F(z). \text{ Applying this result to (14),} \\ R_{f}C_{1} &= \hat{E}(X)N[\hat{E}(X)/\sigma_{X}] + \sigma_{X} \int_{-\hat{E}(X)}^{\infty} zn(z)dz \\ &= \hat{E}(X)N[\hat{E}(X)/\sigma_{X}] + \sigma_{X} \left(E(z)N[\hat{E}(X)/\sigma_{X}] + \sigma_{z}^{2}n[\hat{E}(X)/\sigma_{X}] \right) \\ &= \hat{E}(X)N[\hat{E}(X)/\sigma_{X}] + \sigma_{X} \left(0 \times N[\hat{E}(X)/\sigma_{X}] + 1 \times n[\hat{E}(X)/\sigma_{X}] \right) \\ &= \hat{E}(X)N[\hat{E}(X)/\sigma_{X}] + \sigma_{X}n[\hat{E}(X)/\sigma_{X}]. \end{split}$$

Financial Pricing Models (Part 1)

The value of the second call option, C_2 , may be written as the discounted certainty-equivalent expectation of the insurer's terminal taxable income, viz.,

$$C_2 = C[\theta(\tilde{Y}_1 - Y_0) + P_0; \tilde{L}]$$

$$= R_{f}^{-1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \max[\theta(\tilde{Y}_{1} - Y_{0}) + P_{0} - \tilde{L}, 0] \hat{f}(\tilde{Y}_{1}, \tilde{L}) d\tilde{Y}_{1} d\tilde{L}.$$
(16)

Next, we simplify equation (16) by defining a normal variate $W = \theta(Y_1 - Y_0) + P_0 - \tilde{L}$, with certainty-equivalent expectation $\hat{E}(\tilde{W}) = \theta(S_0 + kP_0)r_f + P_0 - \hat{E}(\tilde{L})$, and variance $\sigma_w^2 = (S_0 + kP_0)^2 \theta^2 \sigma_i^2 + \sigma_L^2 - 2(S_0 + kP_0)\theta \operatorname{cov}(\tilde{L}, \tilde{r}_i)$. This transformation allows us to rewrite our option value as the solution to

$$C_2 = R_f^{-1} \int_0^\infty \tilde{W} \hat{f}(\tilde{W}) \, d\tilde{W}. \tag{17}$$

Fair Return (CARA/Normal OPM)

$$C_2 = R_f^{-1}(\hat{E}(\tilde{W})N[\hat{E}(\tilde{W})/\sigma_w] + \sigma_w n[\hat{E}(\tilde{W})/\sigma_w]), \qquad (18)$$

where

 $N[\hat{E}(\tilde{W})/\sigma_w]$ = the standard normal distribution evaluated at $\hat{E}(\tilde{W})/\sigma_w$; $n[\hat{E}(\tilde{W})/\sigma_w]$ = the standard normal density evaluated at $\hat{E}(\tilde{W})/\sigma_w$.

Substituting the right-hand sides of equations (15) and (18) into equation (7), we obtain an analytic expression for the market value of equity:

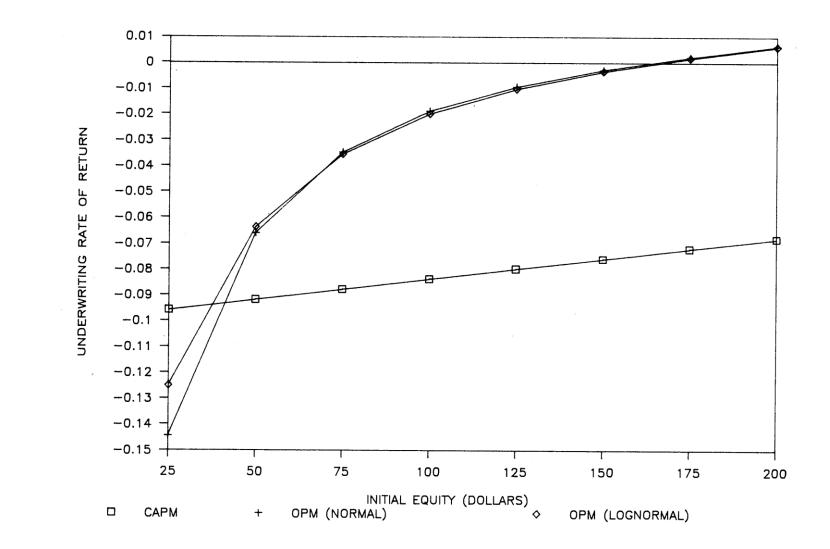
$$V_{e} = R_{f}^{-1}(\hat{E}(\tilde{X})N[\hat{E}(\tilde{X})/\sigma_{x}] - \tau \hat{E}(\tilde{W})N[\hat{E}(\tilde{W})/\sigma_{w}] + \sigma_{x}n[\hat{E}(\tilde{X})/\sigma_{x}] - \tau \sigma_{w}n[\hat{E}(\tilde{W})/\sigma_{w}]).$$
(19)

An implicit solution for the value of P_0 that satisfies the fair return criterion implied by equation (8) may be obtained by employing an appropriate algorithm.

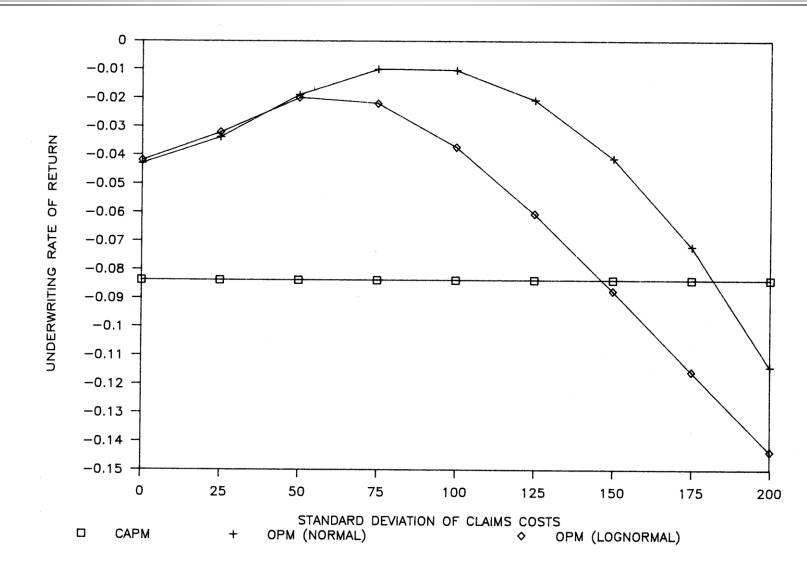
Model Parameterization

Initial Equity (S ₀)	100.00
Funds-Generating Coefficient (k)	1.00
Standard Deviation of Investment Returns (σ_i)	0.20
Expected Claims Costs $(E(\tilde{L}))$	200.00
Standard Deviation of Claims Costs (σ_L)	50.00
Correlation Between Investment Returns/Claims Costs (ρ_{iL})	0.00
Riskless Rate of Interest (\mathbf{r}_{f})	0.07
Statutory Tax Rate (τ)	0.46
Tax-Adjustment Parameter (θ)	0.50
Beta of Investment Portfolio (β_1)	0.338
Expected Return on the Market $(E(\tilde{r}_m))$	0.15
Standard Deviation of Market Return (σ_m)	0.224

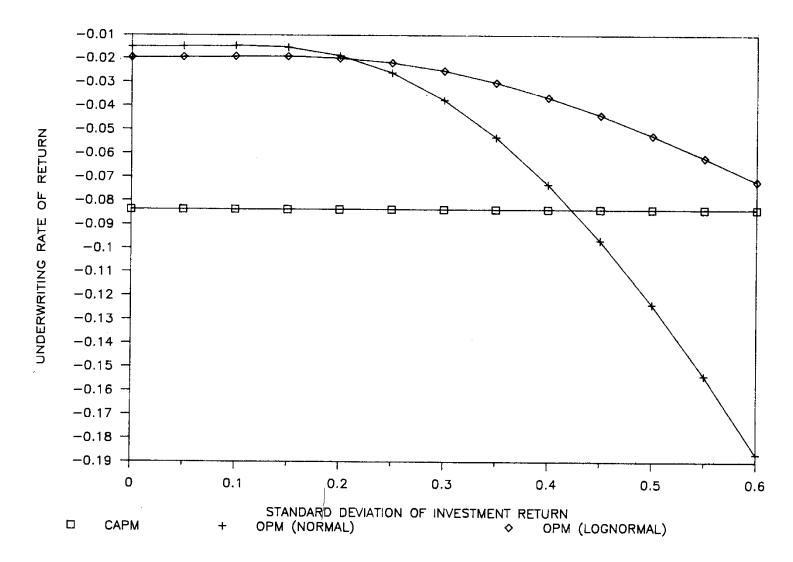
Vary Level of Initial Equity



Vary Standard Deviation of Claims Costs



Vary Standard Deviation of Investment Returns



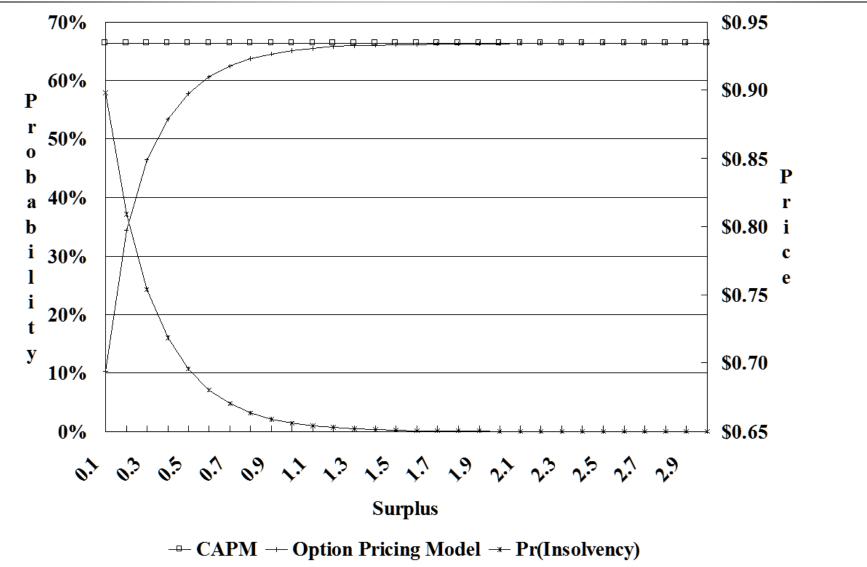
Numerical Comparisons: Default Risk

<u>**CAPM**</u>: If $\tau = 0$, then the "fair" price for insurance $P_0 = E(L)/(1-E(r_u))$, where $E(r_u) = -kr_f + \beta_u [E(r_m) - r_f]$. Let E(L) = k = 1, $\beta_u = 0$, $r_f = 7\%$. Then $P_0 = 1/1.07 =$ \$.9345.

<u>OPM</u>: Same parameterization as for CAPM, only solve equation (19) subject to the fair return criterion given by equation (8), for surplus values ranging from \$3 to \$.10. Also assume:

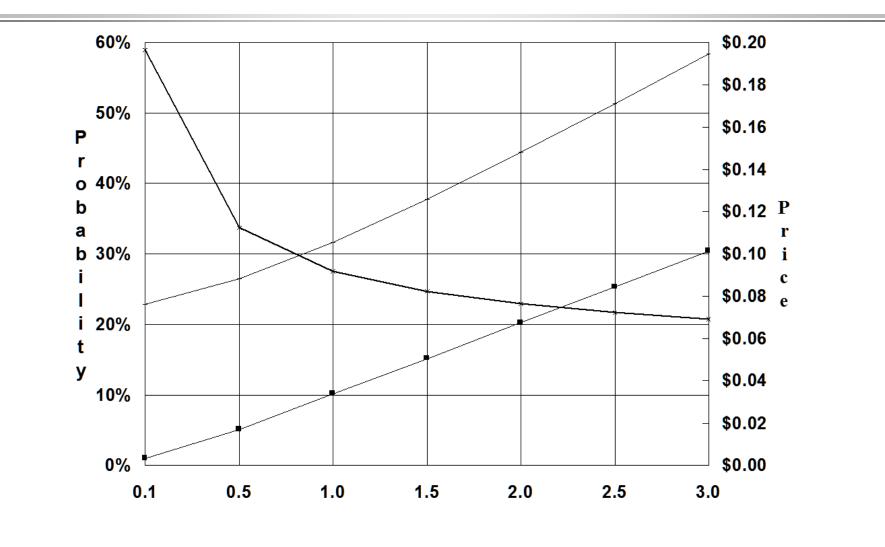
- (1) standard deviation of claims costs (σ_I) = \$.40,
- (2) market risk premium $(E(r_m)-r_f) = 8$ percent,
- (3) standard deviation of market return (σ_m) = 20 percent,
- (4) correlation between investment returns and claims costs (ρ_{iL}) = 0, and (5) beta of insurer's investments (β_i) = 1.

Numerical Comparisons: Default Risk



Financial Pricing Models (Part 1)

Numerical Comparisons: Tax Effects



--- CAPM --- Option Pricing Model --- Pr(No Tax)