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This paper develops a model of price determination in insurance markets. Insur-
ance is provided by firms that are subject to default risk. Demand for insurance is
inversely related to insurer default risk and is imperfectly price elastic because of
information asymmetries and private information in insurance markets. The model
predicts that the price of insurance, measured by the ratio of premiums to discounted
losses, is inversely related to insurer default risk and that insurers have optimal
capital structures. Price may increase or decrease following a loss shock that depletes
the insurer’s capital, depending on factors such as the effect of the shock on the price
elasticity of demand. Empirical tests using firm-level data support the hypothesis that
the price of insurance is inversely related to insurer default risk and provide evidence
that prices declined in response to the loss shocks of the mid-1980s. Journal of
Economic Literature Classification Numbers: G22, G32, G33.  1997 Academic Press

In the mid-1980s, the market for general liability insurance experienced
a ‘‘crisis,’’ triggered by sharp increases in losses that caused a large negative
shock to the equity capital of the insurance industry in 1984. Following the
shock, aggregate premiums written for general liability (GL) insurance
increased at over 70% per year in 1985 and 1986,1 and limitations on the
availability of coverage were widely reported (U.S. Department of Justice,
1986).2 Insurers responded to the shock by raising unprecedented amounts

1 This understates the increase in premium rates, assuming that demand is not totally
inelastic, and understates the cost increase for a given level of real protection—expected out-
of-pocket cost—because of increased use of deductibles, lower coverage limits, and policy
exclusions. A survey of large corporations showed a median rate increase between 1985 and
1986 of 54% for GL primary coverage and 214% for GL excess coverage (U.S. General
Accounting Office, 1988).

2 To a lesser extent other insurance coverages also experienced unusual premium growth
rates during this period. Premium growth in lines of insurance other than general liability
was 19% per year during the 1985–1986 period, compared with about 5% in the early 1980s.
General liability premium growth was near zero in the early 1980s. The data referenced here
are from A.M. Best Company, ‘‘Best’s Aggregates and Averages: 1990 Edition,’’ Oldwick,
NJ, 1990).
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of new equity capital in 1985 and 1986. Considerable debate has focused
on the extent to which events during the crisis represented a rational
response to increased loss expectations and capital depletions or resulted
from insurance market and/or capital market imperfections. The purpose
of this paper is to provide new information to help resolve the controversy
by developing a theoretical model of the relationship between loss shocks,
capitalization, and prices in insurance markets and testing the model using
a pooled cross section, time series sample of insurers over a period including
the 1980s liability insurance crisis.

The liability crisis has been interpreted as a particularly acute phase of
the insurance underwriting cycle, in which periods of ‘‘hard’’ markets, with
rising prices, reductions in coverage, and increases in deductibles, alternate
with ‘‘soft’’ markets, with falling prices and ready availability of insurance.
One important line of research has focused on capital shortages as a possible
cause of underwriting cycles. In standard ‘‘arbitrage’’ models of insurance
pricing (e.g., Kraus and Ross, 1982; Myers and Cohn, 1987), the price of
insurance reflects the discounted value of expected losses and expenses,
adjusted for taxes and market risk. Capital is assumed to be freely available
as long as insurance is priced to yield the appropriate rate of return for
securities of comparable risk. Capital shortages would not occur in the
arbitrage model, and the model cannot explain why insurance would be
unavailable or ‘‘unfairly’’ priced in the absence of regulatory intervention
or some market imperfection.

The principal alternative to the arbitrage model that has been advanced
to explain prices and capital structure in insurance markets is the ‘‘capacity
constraint’’ theory (Gron, 1989, 1994; Winter, 1994).3 The premise of this
theory is that capital shortages and overages resulting from capital market
imperfections are the primary cause of hard and soft markets for insurance,
including the crisis of the 1980s. Insurance risk is assumed to be imperfectly
diversifiable so that insurers must hold equity capital to ensure payment
of claims that are larger than expected. The insurance industry is treated
as a single price-taking firm and is assumed to be constrained, either by
infinitely risk averse policyholders or by regulation, to write only that
volume of business consistent with zero (or negligibly small) insolvency
risk. Maintaining financial capital is assumed to be costly for insurers, due
to factors such as corporate taxation and agency costs. Internal capital is
assumed to be less costly than external capital, because ‘‘a cost is incurred
in the ‘round-trip’ of paying out a substantial amount of retained earnings

3 Among the other factors discussed as possible causes of the crisis are adverse selection,
uncertainty about liability rules and interest rates, and underpricing by insurers (see, for
example, Doherty and Kang, 1988; Harrington, 1988; Priest, 1987; Clarke et al., 1988). Harring-
ton and Danzon (1994) analyze price cutting in soft markets.
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. . . and then immediately raising the same amount through the issuance of
equity’’ (Winter, 1994, pp. 382–383) or because of asymmetric information.

Because of the entry and exit costs for capital, the industry is hypothesized
to go through periods of excess capacity, where the amount of capital in
the industry is excessive relative to the demand for insurance, followed
by periods of capital shortages triggered by loss shocks from imperfectly
diversified risks that cause the zero insolvency-probability constraint to
become binding. Prices are low relative to the present value of losses during
periods of excess capacity, but increase when capacity falls as the price of
existing capacity is bid up in the insurance market. The primary empirical
prediction of the model is that premiums are not unbiased predictors of
expected losses (as the arbitrage theory suggests) but rather that the differ-
ence between premiums and expected losses is inversely related to the
stock of financial capital. Thus, premiums are predicted to be relatively
low when capital is high and high when capital is low.

Although the capacity constraint theory provides useful insights into the
operation of insurance markets, there are several reasons to reexamine the
relationship between capital and price in insurance. First, recent insolvency
experience casts doubt on the assumption that insurance is virtually free of
insolvency risk.4 This assumption plays a key role in the capacity constraint
theory’s prediction of an inverse relationship between price and capital.
Likewise, the version of the arbitrage model that authors like Winter and
Gron use to motivate their analyses does not incorporate financial quality.5

More recent versions of the model view insurance pricing as analogous to
the pricing of risky corporate debt (e.g., Doherty and Garven, 1986; Cum-
mins, 1988). Such models predict a positive relationship between the price
of insurance and capitalization, contrary to the capacity constraint theory,
on the hypothesis that insurance prices will reflect the expected loss to
policyholders due to insolvency (the insolvency put option). Second, the
existing empirical evidence provides mixed support for the capacity con-
straint theory of the mid-1980s crisis. Winter’s (1994) results, using aggre-
gate, industry-wide data, support the theory for cycles prior to 1980 but

4 Insolvencies of property-liability insurers increased from about 10 per year for the period
1969–1983 to 32 per year in 1984–1990, while average annual assessments by guaranty funds
increased from $37 million to $492 million over the same period (Cummins et al. 1994).
In recognition of the growing insolvency problem, the National Association of Insurance
Commissioners (NAIC) adopted an aggressive ‘‘Solvency Policing Agenda’’ in 1989 that
includes more extensive financial ratio and auditing tests of insurer solvency and an accredita-
tion program for state insurance departments (see Klein, 1995). The NAIC adopted rigorous
risk-based capital requirements for property–liability insurers in 1993. The private monitoring
of insurer solvency has also increased since the early 1980s with several firms entering the
insurance monitoring business since that time.

5 We define a firm’s financial quality as reflecting its default risk, with high quality firms
having low default risk.
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not for the period of the 1980s liability crisis. Gron’s (1994) empirical results
support the theory for short-tail lines of insurance but not for long-tail
coverages such as general liability insurance, the line most affected by the
crisis.6 Third, the theory and the existing empirical analyses assume that
the industry operates as a single, price-taking firm, and thus do not provide
information on the cross-sectional relationship between price and capital.
And, fourth, existing empirical analyses of liability insurance markets have
not considered the role of capital flows, even though insurers raised substan-
tial amounts of equity during the 1980s crisis. We estimate a simultaneous
equations model for the joint determination of price and capital flows.

We extend the risky-debt version of the arbitrage theory of insurance
pricing to provide a new explanation of the relationships between loss
shocks, capitalization, and prices in insurance markets. Like Winter and
Gron, we assume that an insurer’s ability to pay claims depends on its
capital stock. However, we assume that insurers are subject to insolvency
risk. Thus, insurance policies in our model are analogous to risky corpo-
rate debt.

We assume that the demand for insurance is positively related to financial
quality and imperfectly price elastic in the short run. This extends the
standard risky debt model, which assumes that demand for corporate debt
is perfectly elastic at the fair market price of the debt.7 Thus, in our model
the relationship between the price of insurance and capital is derived from
policyholder demand for quality, and an optimal capital structure (ratio of
assets to liabilities, or ‘‘safety’’) is implied. The model predicts that safer
firms command higher prices, and the cross-sectional relationship between
safety and price should be positive.

We also generalize the standard risky-debt model of the firm by incorpo-
rating two classes of liabilities—‘‘old’’ liabilities, for which the insurer can
collect no additional premiums, and ‘‘new’’ liabilities (policies) that are
priced in the current period. This generalization is motivated by events
during the liability crisis. Loss shocks due to unanticipated exposures (such
as asbestos and toxic torts) and changes in liability rules affected unsettled
claims on prior policies as well as expected claims for future policies. Loss
shocks from old policies provide a potential impediment to the flow of new
capital into insurance markets. Any improvement in firm safety resulting
from new capital benefits old policyholders by reducing their expected loss

6 Long-tail lines, such as general liability, are those where loss payment cash flows span a
period of several years following the coverage year. In short-tail lines, such as fire insurance,
virtually all loss cash flows occur in the coverage year and the immediately following year.

7 The Winter–Gron model could be interpreted as assuming extreme quality-sensitivity,
such that demand becomes zero if the insolvency probability is finite. Our assumption is that
quality-sensitivity is not this strong so that the equilibrium level of the insolvency probability
is finite.
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due to insolvency (i.e., reducing the insurer’s insolvency put), although they
pay no additional premiums. Thus, new capital inflows following a loss
shock may cause a loss in market value of the insurer’s equity8 to the extent
that the new capital infusions reduce the default risk of the firm.

With regard to the effect of loss shocks on prices, an important contribu-
tion of our analysis is to identify conditions that would give rise to a price
increase following a shock using a model that is more general and more
realistic than the capacity constraint model. In particular, our model does
not require the assumption that insurers are free from default risk or the
presence of severe capital market imperfections. And, unlike the capacity
constraint theory, our theory also can explain a price decrease following
a shock.

The existing theoretical analysis most similar to ours is Cagle and Harring-
ton (1995). They modeled an insurance market with endogenous insolvency
risk where price-taking firms maximize value by choosing output and capi-
tal. With inelastic demand, they show that price increases following a loss
shock but not sufficiently to fully restore capital to preshock levels. If
demand is price and quality elastic, the amount of the price increase follow-
ing a shock is reduced. Our analysis differs from theirs in its use of an explicit
option pricing framework, the introduction of two classes of liabilities, and
the analysis of conditions that could lead to a price decrease rather than
an increase following a shock. We also extend their analysis by providing
empirical tests of the predictions of the model.

Our empirical analysis, using firm-level data for the period 1980–1988,
supports the hypothesis that the relationship between safety and price is
positive, consistent with the view that insurance policies are like risky debt.
The results suggest that prices decreased in response to the loss shocks of
the mid-1980s. Empirical support is also provided for the hypotheses that
insurers have optimal capital structures and that capital flows are positively
related to changes in prices.

Section 1 of our paper provides a statistical overview of liability insurance
markets in the 1980s, including capital flows. Section 2 develops the risky
debt model of the insurance firm and analyzes the effects of a loss shock.
Section 3 tests several implications of the model, using firm-level data for
the period 1980–1988, and Section 4 concludes.

1. TRENDS IN INSURANCE PRICES, LOSSES, AND
CAPITAL FLOWS

Trends in the price of insurance, defined as the loading or ratio or
premium to expected losses for a given policy, cannot be directly measured

8 That is, the market value of equity following the infusion of new capital may be less than
the market value prior to the capital contribution plus the amount of the contribution.



8 CUMMINS AND DANZON

from insurance accounting statements, which report aggregate premiums
(price times quantity). The loading charge measure of price used in our firm-
specific empirical analysis is the ratio of written premiums, net of underwrit-
ing expense and policyholder dividends, to the discounted present value of
accident year (AY) incurred losses (see below), also referred to as the inverse
loss ratio.9 Accident-year (AY) losses include claims paid and reserves for
claims outstanding and anticipated for policies written during that year.10 The
loadingchargeratio thusrepresents themarkupof premiumsoverdiscounted
incurred losses to account for risk bearing and claims settlement services pro-
vided by the insurer.

This section reports aggregate trends, to show the role of retroactive loss
shocks and interest rates in explaining premium increases.11 Figure 1 com-
pares trends in GL premiums, undiscounted calendar year (CY) losses, and
gross national product (GNP) from 1980 through 1988. CY losses rise roughly
in proportion to GNP until 1984, when losses began to increase sharply, in-
creasing by over 200% between 1983 and 1987. Premiums follow a more cycli-
cal pattern, increasing more rapidly than losses between 1984 and 1986.

In order to distinguish retroactive vs prospective loss shocks, Fig. 2
decomposes CY incurred loss into two components: (1) claims paid and
reserves set aside for policies written during that year (i.e., AY incurred
losses), and (2) the loss reserve adjustment for prior accident years. The
reserve adjustment doubled, from about 12% of total CY losses from 1980
to 1983 to 24% in 1985. AY losses accelerated most markedly in 1985 and
1986, which were also the years of the sharpest premium increases.12 The

9 This is similar to the economic loss ratio (the ratio of the present value of losses to
premiums) used by Winter (1994). We use premiums written, which pertain to policies issued
in a given year, rather than premiums earned, which reflect pricing during the current and
preceding calendar years.

10 Some other analyses of cycles use calendar-year (CY) incurred losses, which include the
adjustment in loss reserves for prior years. Both CY and AY losses are gross of loss adjustment
expenses, and are evaluated roughly 12–15 months from the start of the relevant year. For
long-tail lines such as general liability and medical malpractice, the dollar-weighted mean
pay-out period is around five years.

11 The industry aggregate data used in this section are from A.M. Best Company, ‘‘Best’s
Aggregates and Averages,’’ Oldwick, NJ, various years.

12 To further analyze the effect of changing loss expectations, we decomposed accident year
incurred losses into losses already paid and reserves for future claims, as of 15 months from
the start of the accident year, for accident years 1980–1988. These data indicate that paid
claims maintained a steady upward trend, while the growth in reserves first lags payments
and then accelerates sharply in 1984–1986. Plots of paid and reserved claims evaluated at 27,
39, and 51 months show a similar pattern: the increase in AY losses incurred for 1984–1986
primarily reflects an increase in reserves for future claims rather than changes in claim
payments. There are several theories of insurer incentives to manipulate loss reserves. Here
we assume that reported loss reflects insurers’ best estimates of expected loss. Under this
assumption, these trends in reserves suggest a sharp upward revision of expectations regarding
future payments on unsettled claims. Data for 1987–1988 show that these expectations were
correct, as the paid claim index catches up with the reserve index.
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FIG. 1. General liability insurance net premiums written and losses incurred vs gross
national product (GNP). Net premiums written 5 direct premiums written 1 reinsurance
assumed 2 reinsurance ceded. Losses incurred 5 calendar year losses and loss adjustment
expenses incurred.

experience for all long-tail lines combined follows a pattern that is similar
but less extreme than that for GL. The loss reserve adjustment as a percent-
age of total CY losses increased from 4.8% in 1984 to 10.1% in 1985, and
8.7% in 1986; GL accounted for 40% of this total in 1984, 31% in 1985, and
32% in 1986. Thus, the shock was not confined to GL, although the GL
experience was most extreme.

In order to show the trend in prices during the sample period, we plot
the all lines and general liability implied loading ratios in Fig. 3.13 Realized

13 See Harrington (1988) for a previous application of this approach. The payout proportions
are estimated using the industry-wide data from Schedule P, Part 3, from ‘‘Best’s Aggregates
and Averages,’’ 1990 and 1991 editions. This gave 10 payout proportions for 1980 and 1981
and progressively fewer for later year. For the more recent years, where payments are not
available for the longer lags, payout proportions were based on averages for earlier years.
Claims were assumed to be fully paid after twelve years, so judgmental values were used for
the payout proportions in years eleven and twelve. Testing based on alternative approaches
revealed that the results were not very sensitive to the estimation approach for the payout
proportions, in part because the payout tail was relatively stable over the sample period. Loss
cash flows are estimated as AY losses multiplied by the estimated proportion of a given year’s
losses paid in each year of the payout tail. Losses are assumed to be paid at mid-year and
are discounted using U.S. Treasury yield curves from Coleman et al. (1989). The discount
factor is ‘‘risk-free’’ in that there is no adjustment for systematic risk of losses or for default risk.
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FIG. 2. Decomposition of calendar year losses incurred into accident year losses and reserve
adjustment. Accident year losses 5 claim payments and reserves for policies written during
a given year. Reserve adjustment 5 component of reported losses for a year reflecting adjust-
ment in reserves for prior years’ claims.

FIG. 3. Realized loading ratios: All lines and general liability. The loading ratio 5 (net
premiums written 2 underwriting expense 2 policyholder dividends)/(present value of acci-
dent year losses incurred).
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FIG. 4. External vs internal capital flows for stock property-liability insurers. External
capital 5 new capital paid in 2 stockholder dividends. Internal capital 5 net income 1

unrealized capital gains.

loading ratios dropped significantly in 1982–1984 due to unanticipated
losses and price cutting by insurers (Harrington and Danzon, 1994), re-
bounded in 1985–1986, and then dropped to levels similar to the early
1980s.14 Because the loading ratio (markup of premiums over discounted
incurred losses) was only slightly higher in 1985–1986 than during the more
normal periods of the early and late 1980s, the high premiums of 1985–1986
do not appear to be due to abnormal markup ratios. Thus, consistent with
Harrington (1988), we find that the atypical premium increases of 1984–1986
can be explained largely by the increase in expected losses during the
period, the restoration of markups to more normal levels following the
shock, and changes in interest rates.

The crisis years 1984–1986 were atypical not only in the premium in-
creases but also in the inflows of new capital. Figure 4 shows the annual
flows of internal capital (retained earnings plus unrealized capital gains)

14 Some of the mid-1980s increase may reflect the corporate income tax increases of the
Tax Reform Act of 1986, which affected long-tail lines more than short-tail lines. The Tax
Reform Act of 1986 requires insurers to discount losses for purpose of computing the loss
tax deduction. This has the effect of deferring part of the deduction. The deferral is greater
for long-tail lines than for than short-tail lines because losses are paid out over a more extended
period of time in the long-tail lines. See Cummins and Grace (1994).
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and external capital (the difference between capital paid in and stockholder
dividends) for stock insurers, which write more than 85% of GL premiums.
Although stock insurers normally rely on retained earnings to generate
equity capital, insurers responded to the 1984 loss shock by raising unprece-
dented amounts of external capital, with the largest flows in 1985–1986.15

In summary, the liability crisis of 1984–1986 was characterized by four
phenomena: (1) sharp increases in expected losses on both old and new
policies; (2) a large negative shock to capital in 1984; (3) large premium
increases in 1985–1986 that are largely but perhaps not fully explained by
shifts in the prospective loss distribution and interest rates; and (4) unusually
large inflows of new external capital in 1985–1986. The following section
develops a theoretical model of insurer choice of capital structure and
pricing and analyzes response to a retroactive loss shock. The subsequent
section provides empirical tests.

2. A MODEL OF THE INSURANCE FIRM

The standard arbitrage model of insurance pricing implies that the com-
petitive price of insurance is equal to the present value of expected losses,
expenses, and federal income taxes (Myers and Cohn, 1987). This model
does not explicitly reflect demand sensitivity to price or quality, and treats
capital as exogenous. In this section, we present an alternative model that
endogenizes capital and permits us to analyze the effects of retroactive loss
shocks on prices.

Assumptions

The model is based on the following assumptions:

1. Insurers’ losses are imperfectly diversifiable, due to such factors
as dependence among risks and nonstationarity of the loss distribution.
The firm’s ability to pay claims therefore depends on its assets relative
to liabilities.

15 Mutuals rely almost exclusively on retained earnings to generate capital, except for initial
capitalization. Their retained earnings were nearly zero in 1984 but rebounded in 1985 and
1986 as premiums rose and investment results improved. The A.M. Best data on capital flows
reported here pertain to firms that write the great bulk of property casualty premiums, but
exclude some foreign reinsurers and some captives. Anecdotal evidence suggests that capital
flows in the omitted sectors followed similar patterns, with large losses in 1984 and inflows
in 1985 and 1986 with increased rate of formation of captives. The data on external capital
do not distinguish between equity issued in securities markets (whether raised by the individual
insurer or an affiliated firm or parent on behalf of a subsidiary) and transfer of retained
earnings from a noninsurance parent or holding company.
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2. Holding capital is costly because of such factors as corporate in-
come taxation and regulatory constraints on insurers’ permissible asset mix
that may prevent insurers from optimally structuring their asset and liability
portfolios (e.g., managing the duration of equity). Insurers therefore do
not hold sufficient capital to eliminate all insolvency risk.16

3. We consider two possible assumptions about information in capital
markets. Our baseline assumption is informational efficiency, which we
take to mean that managers seek to maximize the value of equity and
cannot dilute old or new equity. Any information asymmetries that exist
are unaffected by a loss shock, and there is no differential cost of external
capital relative to internal capital. We also consider an alternative assump-
tion, that a loss shock differentially raises the cost of external equity relative
to the cost of retained earnings (e.g., Myers and Majluf, 1984), and test for
the implied effects in the empirical analysis.

4. Since insurers are subject to default risk, insurer liabilities are
analogous to risky debt and can be modeled using the standard risky debt
model of the firm (e.g., Merton, 1974), with modifications discussed below.

5. Policyholder demand for insurance depends on expectations about
the firm’s financial quality, which are based on observable leverage ratios
and possibly other characteristics. Whereas the standard risky debt model
assumes a demand for debt that is perfectly elastic at the risk-adjusted
price, our baseline assumption is that the insurer’s demand function, condi-
tional on quality, is imperfectly price elastic, due to information asymmet-
ries that raise the costs of switching insurers for policyholders. We also
consider the implications of assuming perfectly price elastic demand.

The Model

The insurance firm faces a demand for policies that depends on price
and default risk (financial quality):17 Q(p, b(x); Z), where Q 5 quantity
of insurance sold (dollars of promised liability payments); p 5 the price
per unit of insurance; x 5 the firm’s asset-to-liability ratio; b(x) is the
insurer’s insolvency put option per dollar of liabilities, i.e., the current value
of the owners’ option to default if liabilities exceed assets at the claim
payment date (b/x 5 bx , 0); and Z is a vector of parameters of the
policyholders’ loss distribution.18 Time subscripts and other arguments in

16 These costs are not explicitly incorporated in the model to avoid unnecessarily complicat-
ing the notation. Likewise, marketing and administrative costs are not explicitly incorporated.

17 An insurer’s financial quality matters because guaranty funds limit the maximum amount
payable per claim (e.g., $300,000), are subject to delays in payment and may exclude commercial
coverages such as general liability insurance.

18 Thus, we assume that bankruptcy costs are zero, i.e., the loss to policyholders in the
event of insolvency of the insurer 5 Max(0, L 2 A), where L 5 promised loss payment and
A 5 insurer assets.
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the b(x) function are temporarily suppressed for simplicity. Demand is
assumed to be a continuous, concave, decreasing function of the insolvency
put option and price: Qb , 0, Qbb , 0, Qp , 0, Qpp , 0, where
subscripts are used to denote partial derivatives. Our basic assumption
is that demand is imperfectly price elastic because of switching costs
arising from asymmetric information in the product market. An insurer
acquires information about the policyholder’s risk class by initial screening
and by experience over time. Similarly, buyers acquire information about
the insurer’s service quality by experience or costly investigation. Both
stocks of information are destroyed if the policyholder switches insurers
(D’Arcy and Doherty, 1990).

Following the literature on risky corporate debt (e.g., Merton, 1974),
insurance liabilities are modeled as a risky discount bond maturing one
period from the present. The firm begins the period at time 1 with assets
A1 , preexisting liabilities L1 , and equity E1 5 A1 2 L1 . No additional
premium can be collected on the preexisting liabilities, which mature at
the end of the period (time 2). At time 1, the firm can issue new policies
subject to the demand structure Q2(p2 , b(x); Z), where p2 5 price at time
1 of policies issued at time 1 and maturing at time 2. Let L2 5 Q2 denote
the face value of new liabilities, with revenues of P2 5 p2Q2 . The insurer
may also issue new equity E2 . 0 or pay a dividend, E2 , 0. The issue of
new policies and equity changes insurer assets by A2 5 P2 1 E2 . After the
issue of new policies and equity at time 1, A 5 A1 1 A2 is the market value
of assets, L 5 L1 1 L2 is the market value (unadjusted for default risk) of
liabilities,19 and b(x) is the value of the insolvency put on the portfolio of
old and new policies (see below).

The new liabilities are assumed to mature at time 2 along with the
preexisting liabilities.20 If at time 2 the realized value of assets (AR) exceeds
the realized value of liabilities (LR), the policyholders receive LR and the
owners receive AR 2 LR. If AR , LR, the firm defaults and the policyholders
receive AR. Thus, at the beginning of the period, the value of the policyhold-
ers’ claim is L[e2rt 2 b(x)], the riskless present value of the promised
liability payments less the value of the insolvency put option.21 We assume
that if the firm defaults, each class of policyholders receives a share of

19 That is, L is the market value of liabilities if they were paid at time 1. The option model
is based on diffusion processes for assets and liabilities, and L is the value of the liability
state variable at time 1.

20 An alternative approach would be to use a compound option model (Geske, 1977), with
L2 maturing after L1 . This adds complexity without changing the basic result. In fact, it would
exacerbate the problem discussed in the text, that capital added to support L2 is at risk of
benefitting L1 .

21 This uses the homogeneity property of the option model, to factor L and express the
put in terms of the asset-to-liability ratio x (see Cummins, 1988).
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assets proportional to the face value of claims, wi 5 Li/(L1 1 L2), i 5 1, 2.22

Given these assumptions, the value of equity at time 1, following the
policy and equity issue decisions, is given by a call option on the firm’s
assets.23

CS(A1 1A2 ,L1 1L2 ,t)5A1 1A2 2(L1 1L2)e2rt 1(L1 1L2)b(x;r,t,s 2),
(1)

where Ai 5 market value of assets, i 5 1, 2,
Li 5 market value of liabilities, i 5 1, 2,

b(x; r, t, s 2) 5 b(x) 5 the value of a put option on random variable x with
exercise price 1,

x 5 (A1 1 A2)/(L1 1 L2) 5 A/L,
r 5 risk-free discount rate net of expected liability inflation,24

t 5 1 5 time until expiration of the liabilities,
s 2 5 the firm’s risk parameter,

5 s 2
A 1 w2

1s 2
L1

1 w2
2s 2

L2
2 2w1sA1 2 2w2sA21 2w1w2s12 ,

sj 5 the diffusion parameter for process j ( j 5 A 5 assets, j 5
L1 5 liability class 1, and j 5 L2 5 liability class 2),

sA1 , sA2 , s12 5 the covariance parameters between the asset process and

22 This liquidation rule is consistent with the way insurance bankruptcies are handled in
practice (National Association of Insurance Commissioners, 1993). With this rule, the put
option is on the portfolio rather than on each block separately. Because an option on a
portfolio is worth less than the appropriately weighted sum of the individual options, there
is generally a gain from diversification if the firm writes the new policies. Note that the price
at time 1 is based on the market value of liabilities at that time rather than the unknown
realization, LR.

23 This is the analogue of the standard put-call parity relationship. The reader is referred
to Cummins (1988) for the derivation of the option model with stochastic assets and a single
class of stochastic liabilities and to Appendix A for a sketch of the derivation of the two-
class model. Assets and both classes of liabilities are assumed to be stochastic and follow
correlated geometric Brownian motion processes. The risk-free rate of interest is assumed to
be nonstochastic. The derivation requires the additional assumption that the sums A1 1 A2

and L1 1 L2 can be treated as if they can be approximated by lognormal random variables.
(Although products and quotients of lognormal random variables are lognormal, sums of
lognormals are not lognormal.) For a previous analysis using this assumption see Doherty
and Garven (1986). The assumption simplifies the theoretical discussion by permitting us
to take advantage of the homogeneity property of the Black–Scholes option formula. The
assumption would present a problem only if there were some reason to believe that it would
change the conclusions derived from the analysis, for example, because the distributions of
the sums A1 1 A2 and L1 1 L2 are markedly different from the lognormal. In extensive
simulations of sums of two lognormal variables we were rarely able to reject the hypothesis
that the sum could be described by a lognormal distribution (Shapiro–Wilk test).

24 If insurance liability inflation were the same as economy-wide inflation, r would equal
the real riskless rate of interest. However, the model allows insurance liability inflation to
differ from economy-wide inflation. See Appendix A for a sketch of the derivation.
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liability process 1, between the asset process and liability
process 2, and between liability processes 1 and 2, respec-
tively, and

wi 5 Li/(L1 1 L2), i 5 1, 2.

In this model there are four classes of claimants to the firm’s assets, old
and new policyholders and old and new stockholders, which may overlap.
The issue of new policies and/or new equity may affect the relative value
of the claims of the four groups. The assumption of informational efficiency
in capital markets precludes an insurance or equity issue decision that
dilutes the value of old equity or imposes a capital loss on new equity.
Thus, the market value of firm equity following the policy/equity issue
must be at least as large as the value of equity prior to the policy/equity
issue, C1(A1 , L1 , t), plus the value of new equity contributed, E2

CS(A1 1 A2 , L1 1 L2 , t) $ C1(A1 , L1 , t) 1 E2 . (2)

Subject to this constraint the firm at time 1 chooses price (p2) and new
equity (E2) to maximize the value added to equity25

MAXIMIZE:
p2 ,E2

CS 2E22C1 5Q[p2 ,b(x)][p2 2e2rt 1b(x)]1L1[b(x)2b1(x1)],

(3)

where b1(x1 ; r, t, s 2
1) 5 b1(x1) 5 the value of the insolvency put option at

time 1 prior to issuing new policies and equity,
x1 5 A1/L1 , and
s 2

1 5 s 2
A 1 s 2

L1
2 2sA1.

The first order conditions for a maximum with respect to p2 and E2 are:

hQ 1 Qp[p2 2 e2rt 1 b(x)]j 1 hQb[p2 2 e2rt 1 b(x)]

1 Q 1 L1jbxxp 5 0 (4)

hQb[p2 2 e2rt 1 b(x)]1 (Q 1 L1)jbxxe 5 0, (5)

where Qp , Qb 5 Q/p2 and Q/b, respectively,
xp , xe 5 x/p2 and x/e, respectively, and

bx 5 b/x.

25 Equation (3) is obtained by subtracting E2 and C1(A1 , L1 , 1) from (1), using the put-call
parity relation, C1 5 A1 2 L1[e2rt 2 b1(x1)]. This model assumes that buyers cannot ‘‘undo’’
the firm’s capital structure choice through ‘‘homemade’’ increases or reductions in default risk.
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The first expression in braces in Eq. (4) is the direct income effect of a
price change. The second expression is the indirect ‘‘quality’’ effect of a
price change on the insolvency put. From Eq. (5), this expression is zero
if capital can be optimally adjusted using equity issue.

In Eq. (5) the first term hQ2[p2 2 e2rt 1 b(x)]jbxxe is positive, reflecting
the demand shift from increasing quality. The second expression, (Q 1
L1)bxxe , is negative: adding equity reduces the value of the firm because
the new equity improves safety not only for new policyholders but also for
old policyholders who pay no additional premium. Thus, if demand is totally
inelastic with respect to quality (Qb 5 0), equity is optimally zero. Given
Qb , a higher markup per new policyholder is required to raise new equity
in firms with relatively large outstanding liabilities L1 . Rearranging yields

p2 2 e2rt 1 b(x)
p

5 2E21
Qp (49)

p2 2 e2rt 1 (b(x)
b(x)

5 2E21
Qb S1 1

L1

QD , (59)

where EQp 5 (Q/p2)(p2/Q) 5 the elasticity of demand with respect to
price, and

EQb 5 (Q/b)(b/Q) 5 the elasticity of demand with respect to
the put.

Equation (49) is the standard formula for the profit maximizing markup of
price over marginal cost. However, with limited liability, marginal cost is
the expected value of liabilities net of the value of the put. Thus, assuming
unbiased policyholder perceptions of quality, prices are lower with limited
liability than with unlimited liability, and safer firms command higher prices.

Combining Eqs. (49) and (59) yields

Qb

Qp
5

Q 1 L1

Q
or

EQb

EQp
5 SQ 1 L1

Q D b(x)
p2

. (6)

Equation (6) implies that the larger the ratio of old liabilities L1 to new
liabilities, the higher is the optimal insolvency put b(x) (lower safety),
relative to price (assuming Qbb , 0, as above). In elasticity form, Eq. (6)
is analogous to the Dorfman–Steiner condition for optimal expenditure
on advertising because, like advertising expenditures, adding equity shifts
demand.26 Here, the optimal value of the limited liability put (Q 1 L1)b(x)

26 The Dorfman–Steiner condition states that the optimal ratio of advertising to sales is
equal to the ratio of the demand elasticities with respect to advertising and price. See Scherer
and Ross (1990), pp. 592–593.
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relative to sales is equal to the ratio of the demand elasticities with respect
to quality and price. Thus, in our model an optimal capital structure (assets/
liabilities) is derived from the firm’s demand structure, in contrast to other
models where capitalization is exogenously determined by regulation or
other factors (e.g., Myers and Cohn, 1987; Gron, 1994).

Firm Response to a Retroactive Loss Shock

Assume that prior to time 1, a retroactive shock to the loss distribution
increases the face value of old liabilities L1 , thereby reducing the value of
old equity and reducing safety below the optimal level. Before turning to
comparative statics analysis of effects of this shock on the policy and equity
issue decision at time 1, some straightforward implications of the model
are worth stating.

If capital markets are informationally efficient and, contrary to our base-
line assumption, the demand for insurance is perfectly price elastic condi-
tional on quality, then the firm would not choose to improve its safety level
(reduce the insolvency put) from its post-shock level b1(x1). This result is
immediate from Eq. (3). If insurance demand is perfectly price elastic, the
price of insurance is simply the price of a risky discount bond p2 5 [e2rt 2
b(x)], implying that the first expression on the right-hand side of Eq. (3)
is zero.27 If safety were to improve following a shock so that b(x) , b1(x1),
capital would be penalized. An increase in safety would increase the value
of old policyholders’ claims (L1). But since they pay no additional premi-
ums, the market value of equity would decline by an equivalent amount.
However, informational efficiency in capital markets implies that the firm
would not choose to dilute either new or old equity (beyond the initial loss
to old equity due to the loss shock), so that b(x) $ b1(x1) following a shock.28

However, if the demand for insurance is not perfectly price elastic, then
it may be optimal to raise safety above its post-shock level. From (3), if
the markup of price over marginal cost [p2 2 e2rt 1 b(x)] is positive, then
b(x) can be less than b1(x1) without violating the constraint (2). The re-
sponse of equity issue to a loss shock depends on the price and quality
elasticities of demand and the cost of equity capital. Let p2 and E2 denote

27 This assumes that insurance markets are competitive and that switching costs are suffi-
ciently low, such that competition among insurers drives price down to the marginal cost,
even if buyers are risk averse and hence willing to pay a markup over marginal cost.

28 In theory the equity owners could increase the value of equity at the expense of old
policyholders, by raising less equity or paying a dividend, thereby raising the put value
(b(x) . b1(x1)). But such ‘‘go-for-broke’’ behavior is unlikely to be a value-maximizing strategy
in a multiperiod context in which quality in period t affects demand in future periods, via
reputation effects. Note that, even with informationally efficient capital markets and perfectly
price elastic insurance demand, there is in principle no limit to the amount of capital or new
insurance that can be issued as long as b(x) $ b1(x1).
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the optimal price of new policies and quantity of new equity issued at time
2. Comparative statics analysis shows that the response of equity issue to
an increase in L1 (E2/L1) is ambiguous.29 The increase in L1 raises the
ratio of old to new liabilities and, since old policies contribute no additional
revenue, this raises the marginal cost of adding equity (see Eq. (5)). Never-
theless, it may be optimal to issue some new equity (E2/L1 . 0) if marginal
revenue per new policy also increases, either because the quality elasticity
increases (in absolute value) in response to the loss shock or because the
markup per policy increases. Because the baseline assumptions of the model
imply that demand becomes unambiguously more quality elastic following
a shock, this effect alone or in combination with an increase in the markup
must be sufficiently large in order for E2/L1 . 0.30

We now consider the response of price to a loss shock. Assuming informa-
tional efficiency in capital markets (i.e., that the cost of external equity
relative to internal equity is unaffected by a loss shock), the optimal price
change, p2/L1 is:

p2

L1
5

Qp 1 Qb 1 Qpb[ p2 2 e2rt 1 b(x)]
D

, (7)

where Qpb 5 2Q/p2b, and D is the determinant of the second derivatives
of the objective function.

Thus, given informational efficiency in capital markets, a sufficient condi-
tion for a negative relation between price and a loss shock (p2/L1 , 0)
is that Qpb is negative. Qpb is a sufficient condition (under the baseline
assumption that Qb and Qp are , 0) for demand to become more price
elastic in response to an increase in b (i.e., a decline in the firm’s safety
level).31 Among other things, a higher probability of insolvency reduces
the expected value of the private information the insurer possesses regard-
ing the buyer and of the buyer’s private information on firm service quality,
since this information would be lost in the event the firm becomes insolvent.
As a result, an increase in b may make it more attractive for the buyer to
reenter the market and find insurance elsewhere. Thus, an inverse relation-

29 The comparative statics are presented in an appendix available from authors.
30 The quality elasticity is EQb 5 (Q/b)(b/Q) 5 Qbb/Q, where the subscript on b has

been suppressed to simplify the notation. Differentiating, one obtains EQb/b 5 b[QQbb 2

Q2
b]/Q2. Under the baseline assumptions of the model, Qbb , 0, and thus EQb/b , 0 unambig-

uously.
31 The price elasticity is EQp 5 (Q/p2)(p2/Q) 5 Qpp/Q, where the subscript on p has

been suppressed to simplify the notation. Differentiating, one obtains EQp/b 5 p[QQpb 2

QpQb]/Q2. Under the assumptions Qp , 0 and Qb , 0, EQp/b , 0 unambiguously if
Qpb , 0.
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ship between price and a loss shock is a plausible (but not necessary)
outcome in our model.

A positive relationship between price and a loss shock is also possible
in our model, if either Qpb is positive (and sufficiently large) or if a loss
shock severely raises the cost of external capital, for example, due to
increased risk that new equity will increase the value of old liabilities
sufficiently to cause a capital loss. Under the extreme assumption that no
adjustment of equity is possible, comparative statics analysis shows that
the expression for p2/L1 involves an additional term from the quality
effect (see Eq. (4)), which is positive, reflecting the fact that higher prices
boost safety and reduce the insolvency put. Thus, under the appropriate
conditions, the model yields predictions that are consistent with those of
the capacity constraint model. However, our model is more general in the
sense that it can also explain a price decrease in response to a shock.

Factors not explicitly included in the model also could increase the likeli-
hood of a price increase. For example, a shift in the underlying loss distribu-
tion in response to a shock could affect policyholders’ demand for insurance.
If new policyholders and old policyholders are the same individuals, by
paying higher prices for new policies they contribute to the increased safety
of their own old policies. While safety increases by less than the contribution
(because strengthening equity also benefits equity holders and other policy-
holders), the fact that policyholders’ existing claims are strengthened may
lessen their resistance to higher prices. A positive change in price also
might be more likely in response to loss shocks that are correlated across
firms because an industry-wide shock is expected to make firm-specific
demand less elastic.32

If we drop the assumption of informationally efficient capital markets
and assume instead that equity markets fear that managers have under-
reported the true increase in old liabilities (L1), the model implies that
inflows of capital may be associated with price increases, which strengthen
expectations of retained earnings and signal capital markets that equity
will not be penalized because of increases the the value of old liabilities.
One implication of the assumption that shocks to the loss distribution may
affect both insurance demand and the cost of capital is that prices may

32 With informational efficiency in insurance markets—including insurer information about
policyholder risk (no adverse selection) and policyholder information about insurer quality—
the threat of entry by new firms would constrain prices charged for new policies to their
risk-adjusted value. But if new entrants face higher information costs than old firms, and
policyholders face information costs in switching to new firms, then entry may not deter
temporary price increases by old firms. In fact, much of the entry that occurred in the
commercial liability insurance market during the 1980s was in the form of policyholder-initiated
insurance firms, including captives, mutuals and risk retention groups. This is consistent with
the hypothesis that asymmetric information acts as a barrier to entry.
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respond differently to retroactive loss shocks than to capital shocks from
other sources. To test this hypothesis we decompose the change in capital
into the components due to retroactive loss shocks, new internal capital,
and new external capital.

3. EMPIRICAL TESTS

The theoretical model yields some formal predictions and suggests other
testable hypotheses. An important prediction of the model is that the price
of insurance is positively related to capitalization, due to the risky debt
nature of insurance policies. A related implication is that insurers have
optimal capital structures because of buyer preference for financial quality.
Thus, capital flows are predicted to adjust to attain optimal leverage ratios.

The predictions of the model under alternative assumptions about the
effects of shocks on demand elasticities and other important conditions are
summarized in Table I. Under the baseline assumptions of the model, we
predict an unambiguous inverse relationship between price and a loss shock
provided that Qpb , 0, a sufficient condition for an increase in price elasticity
of demand following a shock. However, if Qpb is positive and sufficiently
large, prices may respond positively to a loss shock. Under these conditions
the price elasticity of demand is likely to decrease following a shock. If we
relax the baseline assumptions and assume instead that no new capital can
be raised following a shock and/or that the demand curve shifts to the right
following a shock, then prices are more likely to increase in response to a
shock. Table I also shows that capital will be raised following a shock under
the baseline assumptions of the model if the quality elasticity of demand
and/or price markups increase sufficiently following a shock.33

Data and Variable Construction

Our sample consisted initially of all firms that wrote at least 0.5% of the
general liability (GL) market in any year between 1976 and 1987, a total
of 50 firms (affiliated firms are consolidated into groups).34 Three firms
were eliminated from the sample because they either became insolvent or
stopped issuing new policies during the sample period. These firms were
excluded because the theory applies to ongoing firms and because our
generalized least-squares (GLS) estimation technique requires complete

33 Recall that an increase in the quality elasticity of demand is an unambiguous prediction
under the baseline assumptions of the model. The effect of a shock on the markup is ambiguous
in our model.

34 Captives were excluded in selecting the sample because their principal customers are their
parent firms, which have different information sets than the customers of commercial insurers.
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TABLE I
PREDICTED RESPONSE OF PRICE AND NEW EQUITY TO A RETROACTIVE LOSS SHOCK

Baseline assumptions:
1. Informational efficiency in capital markets (no dilution of equity, internal and exter-

nal costs of capital are identical).
2. Demand inversely related to price (Q/p 5 Qp , 0) but not infinitely price elastic.a

3. Demand inversely related to expected insolvency costs (Q/b 5 Qb , 0) but not in-
finitely elastic.

Response of price to loss shock (p2/L1):b

p2/L1 , 0 requires:
1. Baseline assumptions, and either
2. 2Q/pb 5 Qpb # 0 (a sufficient but not necessary condition for demand to become

more price elastic following a shock), or
3. Qpb . 0 but Qp 1 Qb , 2Qpb(p2 2 e2rt 1 b(x)). (Qpb . 0 is a necessary but not suf-

ficient condition for demand to become less price elastic following a shock).
p2/L1 . 0 requires:
Case A: 1. Baseline assumptions, and

2. Qpb . 0 and sufficiently large so that Qp 1 Qb . 2Qpb(p2 2 e2rt 1 b(x)).
The larger is Qpb , the more likely it is that demand is less price elastic fol-
lowing a shock.

Case B: Some combination of the following factors is present and of sufficient magni-
tude to lead to a price increase:
1. The cost of capital rises following a shock and the quality effect is strong

enough to permit a price increase.
2. The demand for insurance increases following a shock.
3. Price elasticity of demand is low because of significant overlap between the

old and new policyholders.
4. Price elasticity of demand is low because shocks are correlated across the in-

dustry rather than being firm-specific.
Response of new capital to loss shock (E2/L1):c

E2/L1 . 0:
Case A: 1. Baseline assumptions with some combination of the following factors present

in sufficient strength such that E2/L1 . 0:
2. The markup per policy is sufficiently high, and/or
3. Demand is sufficiently quality elastic, and/or
4. Old liabilities are sufficiently small relative to demand for new policies.

Case B: 1. Demand is perfectly price elastic.
2. Equity is introduced to meet increased demand without lowering the insol-

vency put b(x).
E2/L1 # 0:
Baseline assumptions but factors (2), (3), and (4) in Case A above are not sufficient for
a positive partial derivative.

a Q(p, b(x)) 5 insurance demand function (demand is expressed in terms of dollars of
promised liability payments), where p 5 price per unit of insurance, x 5 the firm’s asset-to-
liability ratio, b(x) 5 the insurer’s insolvency put option per dollar of liabilities, i.e., the value
of the owners’ option to default if liabilities exceed assets at the claim payment date with
b/x 5 bx , 0.

b In this expression, p2 5 price of insurance issued at time 1, and L1 5 preexisting liabilities
of the insurer at time 1.

c E2 . 0 new equity capital raised by the insurer at time 1; E2 , 0 dividend to shareholders
paid at the beginning of period 2.
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panel data. One firm was eliminated because it was acquired by another
sample firm in 1986, and one was eliminated based on statistical analysis
of outliers. The 45 firms in the final sample accounted for 75% of total
industry premium volume and 85% of general liability premium volume
during the sample period. The sample firms are shown in Appendix B.

The data are from the annual statements filed with state insurance depart-
ments, as reported by the A.M. Best Company. These data are more detailed
and comprehensive than the data used in most existing studies of underwrit-
ing cycles, which rely on annual aggregate data for the entire industry
rather than firm-specific data.

Even though the ‘‘crisis’’ was most extreme in the line of general liability
(GL) which includes product liability, we base our analysis of price on the
company-wide, weighted average price across all lines. Although it would
be useful to evaluate the GL-specific prices during the sample period, the
data available to us were not adequate to support this type of analysis. Use
of the all-lines price could be viewed as theoretically appropriate, because
the insolvency put value is company-wide, rather than line-specific. The
company’s equity backs all policies, and no specific category of policies gets
priority in bankruptcy. Because price may vary by line due to differences
in risk and anticipated claims inflation and because GL accounted for a
substantial share of the 1984–1986 price increase, we include the proportion
of premiums in GL as a control variable.

Price. Our measure of price is the ratio of premiums paid to the dis-
counted present value of expected losses for the total business written by
the company. The numerator is premiums written, which reflects pricing
on policies issued during a given year, measured net of underwriting expense
and dividends paid to policyholders. Incurred losses are net of changes in
prior years’ reserves, i.e., on an accident year (AY) basis, and are discounted
using the U.S. Treasury yield curves published in Coleman et al. (1989).35

Losses include loss adjustment expenses since legal expense coverage is
part of the protection of a liability insurance policy.

Financial quality, b(x). Since policyholders cannot observe bt(x), we
assume that they form an expectation of quality based on indicators of
leverage in period t 2 1. To test whether prices are affected by the source
of capital, either because prices respond differently to a shock to prior
liabilities than to other sources of capital change or because external capital
is more costly than internal capital, we decompose capital at the end of
year t 2 1 (Kt21 5 At21 2 Lt21) into its components as

Kt21 5 Kt22 1 AYINC t21 1 NEWCAPt21 2 LRAL t21 (8)

35 We use the all-industry payout tails for Schedule P lines and the Schedule O payout tail
for all other lines. The years used to estimate the payout tails are discussed in footnote 13.
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where Kt21 5 ASSETSt21 2 LIABt21 5 assets minus liabilities at end of
year t 2 1; AYINC t21 5 premiums 1 net investment income 1 unrealized
capital gains 2 accident year incurred losses; NEWCAPt21 5 capital paid
in from external sources net of stockholder dividends paid out in year t 2
1; and LRAL t21 5 losses paid 1 change in reserves in AYt21 for accident
years , t 2 1. All t 2 1 variables are normalized to LIABt22.36 The loss
shock LRAL t21 measures the effect on capital in period t 2 1 of changes
in incurred losses for prior years. As another indicator of financial quality,
we also define a dummy variable (BESTSA) that takes a value of 1 if the
A.M. Best Company rating for a firm is A or A1.

Capacity constraint. The Winter/Gron capacity constraint hypothesis
predicts that price is inversely related to capacity, defined as the level of
surplus relative to the demand for insurance. To test whether the relative
level of surplus adds additional explanatory power, after controlling for
the firm-specific variables suggested by our model, we include Winter’s
(1994) measure of capacity—real capital in t 2 1 relative to the average
value over the preceding five years, Kt21/K5 , where K5 5 average real
capital over the period t 2 2 to t 2 6. In order to distinguish the industry-
wide effect from the firm-specific effect, we decompose the firm-specific
capacity variable Kt21/K5 into two orthogonal components: INDUSK t21 is
the predicted value from a regression of Kt21/K5 for the firm on the analo-
gous value for the industry as a whole; FIRMKt21 is the residual from this
regression. The orthogonalization removes a source of multicollinearity
and provides a cleaner test of the capacity constraint hypothesis, which
emphasizes industry-wide capital shortages (INDUSK t21 varies over time
but not cross-sectionally).

New capital. Our measure of new equity NEWCAP is capital and sur-
plus paid in from external sources. This includes new equity issues and
transfers from noninsurance parent corporations.37

Other variables. We include as a control variable the proportion of the
firm’s premium volume in general liability (GLSHARE), since the price
(inverse loss ratio) is expected to differ across lines, depending on line-
specific loss adjustment and underwriting expenses, risk and taxes. The
proportion of premiums in all other long-tailed lines was also initially
included, but was not significant and was dropped from the equations
reported here.

36 We normalized to LIABt22 rather than LIABt21 since LIABt21 , the measure of retroactive
liabilities, is a key explanatory variable.

37 Transfers from a parent are appropriately treated as new equity in our model, assuming
that the market would penalize the stock of the parent for transfers that reduce equity
value. Our measure of new equity nets out equity flows among insurers within the same
insurance group.
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A dummy variable distinguishes stock insurers from mutuals and recipro-
cals. Stocks may differ from mutuals for reasons such as risk diversification,
access to capital, agency costs, and control of moral hazard and adverse
selection.38 We do not attempt to distinguish among these factors. Another
dummy variable distinguishes publicly traded stock insurers from the other
firms in the sample to control for any differences arising from a firm’s trading
status. Table II reports means and standard deviations of all variables.

Specification

The theory implies a two equation model in price level pt and additions
to equity from external sources Et :

pt 5 a0 1 a1Kt21 1 a2Xt 1 a3Xt21 1 ut (9)

Et 5 b0 1 b1(pt 2 pt21) 1 b2Yt 1 b3Yt21 1 nt , (10)

where X and Y are vectors of predetermined variables, ai and bi (i 5 0, 1)
are scalar coefficients, ai and bi (i 5 2 and 3) are coefficient vectors, and
ut and nt are error terms. Some of the coefficients in ai and bi , i 5 2, 3, are
constrained to zero based on the theory. We hypothesize that policyholder
expectations of quality in period t depend primarily on actual values in
period t 2 1. Thus, most of the elements of a2 are constrained to zero. On
the other hand, inflows of new equity are more likely to be affected by
contemporaneous values of the explanatory variables, so that most elements
in b3 are constrained in zero. The rationale for this approach is that detailed
data on the financial condition of insurers is made available to the public
and regulators annually, at year-end, whereas the insurers themselves can
base equity issuance decisions on more recent, internal data. The use of
different lag configurations in the two equations leads to identification of
the model.

The equations reported here are based on a pooled, cross-section time-
series analysis of 45 firms for the period 1980–1988. Testing revealed that
the regression error terms in Eqs. (9) and (10) were characterized by serial
correlation and heteroskedasticity. With lagged endogenous variables and
autocorrelated errors, OLS estimates will be inconsistent. To estimate (9)
and (10), we therefore use a generalized least-squares (GLS) model for
panel data developed in Kmenta (1986, pp. 616–625). The model is adapted
to control for the problem of lagged endogenous variables using the autore-
gressive two-stage least squares approach proposed by Kmenta (1986, pp.
708–710). Both the autocorrelation and heteroskedasticity adjustments are

38 See, for example, Mayers and Smith (1988) and Danzon (1984).
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TABLE II
SUMMARY STATISTICS: VARIABLES INCLUDED IN THE REGRESSIONS: MEANS AND STANDARD

DEVIATIONS, 1980–1988

Standard
Variable Mean deviation

Price 1.1284 0.1537
New equity capital $38,251 $102,355
Change in price 20.0006 0.1399
Assets $4,637,460 $4,930,660
Liabilities $3,587,984 $3,569,421
Capital $1,049,476 $1,608,452
Accident year income $170,464 $232,731
Loss Reserve Adjustment $54,380 $123,433
Premiums written $2,102,531 $2,506,955
General liability premiums written/total premiums

written 0.115 0.094
Stock: Dummy variable 5 1 if the insurer is a stock

company, 0 otherwise 0.800 0.400
Traded: Dummy variable 5 1 if the insurer is a pub-

licly traded stock company, 0 otherwise 0.467 0.500
Best’s A or A1 rating 5 BESTSA Dummy variable

5 1 if A or A1, 0 otherwise 0.881 0.324
FIRMK(t 2 1) 0 0.160
INDUSK(t 2 1) 1.096 0.098
Sample size 405
Percent of industry premiums written by sample firms

(1980–1988) 74.5%
Percent of general liability premiums written by sam-

ple firms (1980–1988) 84.7%

Note. Dollar valued variables are in thousands. All insurer financial statement data are
from regulatory annual statements as reported on the A.M. Best Company data tapes. Lags
are indicated by the notation t 2 i, t 5 current period. PRICE 5 (net premiums written—
underwriting expenses—dividends to policyholders)/(present value of accident year losses
incurred). Net premiums written 5 direct premiums written 1 reinsurance premiums assumed
2 reinsurance premiums ceded. Losses are discounted using U.S. Treasury yield curves from
Coleman et al. (1989) and industry-wide loss payout proportions from A.M. Best Company,
‘‘Best’s Aggregates and Averages,’’ 1990, 1991. Accident year income is defined as calendar
year net income plus the loss reserve adjustment, where the loss reserve adjustment is the
component of a given year’s calendar year losses incurred attributable to adjustments in
reserves for all prior years. BESTA 5 dummy variable 5 1 if the insurer is rated A or A1

by the A.M. Best Company, 0 otherwise. Real equity capital is obtained by deflating equity
capital by the CPI, base year 1982. To obtain FIRMK(t 2 1) and INDUSK(t 2 1), we define
K(t 2 1)/K(5), where K(t 2 1) 5 real capital in year t 2 1 and K(5) 5 average real capital
over the period t 2 2 to t 2 6. INDUSK(t 2 1) 5 the predicted value from a regression of
K(t 2 1)/K(5) for the firms in the sample on the analogous value for the industry as a whole:
FIRMK(t 2 1) 5 the residual from this regression.
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allowed to vary by firm.39 OLS results are also reported for comparison;
and standard two-stage least-squares (TSLS) estimates of the capital equa-
tion are reported as well, because of the presence of pt in Eq. (10).40

Empirical Results

The price level equation. Table III reports estimates of three specifica-
tions of the price level equation, with different measures of financial quality.
The first equation includes only a single composite measure of lagged
financial quality (equity capital/liabilities). This variable is significantly posi-
tively related to price, consistent with the risky debt hypothesis that safer
firms command higher prices.

The second equation decomposes lagged capital into the two-period
lagged capital stock (Kt22) and a vector of three measures of capital change:
new internal capital (AYINC t21), new external capital (NEWCAPt21), and
the loss shock from old liabilities (LRAL t21). Under the null hypothesis
that policyholders care only about overall leverage but are indifferent to
the source of capital, the coefficients on these four components should be
equal (in absolute value). Equation (3) adds the variables, INDUSK t21 and
FIRMK t21 . The capacity constraint theory predicts a negative coefficient
on INDUSKt21 .

The results in Eqs. (2) and (3) support the risky debt hypothesis: the
internal and external capital variables have statistically significant positive
coefficients and the loss reserve adjustment (LRAL t21) has a negative
coefficient that is statistically significant in the GLS equations, providing
evidence of an inverse relationship between prices and loss shocks during

39 We use a first-order autoregressive specification for the error term in the GLS regressions:
uit 5 riui,t21 1 «it , where uit 5 the error term for company i in year t; E(u2

it) 5 s 2
i (heteroskedastic-

ity); «it p N((0, s 2
«i), E(«it«i,t2i) 5 0, i . 0; and E(uitujt) 5 0, i ? j. The equations are iterated

until the coefficient estimates and other parameters converge. Such iterated Aitken estimates
have been shown to converge to maximum likelihood estimates if estimation is begun with
initial consistent estimates.

40 We also tested an error component (random effects) model, with the error term specified
as uit 5 ji 1 nt 1 «it , for company i in year t, with the usual assumptions about the error
components (see Kmenta, 1986, p. 625 for the details). Unlike the first-order autoregressive
model, which implies that the covariance of the errors, E(uituis), t ? s, declines geometrically
as the time distance between disturbances increases, the error components model implies that
E(uituis) 5 s 2

j , t ? s; i.e., the covariance of the disturbances over time remains unchanged
regardless of the time distance between observations. As mentioned above, the autoregressive
specification is indicated as more appropriate for our sample. We also tested a fixed effects
model, which is estimated using OLS with time and company dummy variables added to the
specification. The fixed effects specification does not adjust for first-order serial correlation
but rather allows the constant term in the regression to vary by year. The regressions results
based on the random and fixed effects models are similar to the OLS regressions reported
in Tables III and IV.
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TABLE III
PRICE LEVEL EQUATION: 1980–1988

Equation 1: Equation 2: Equation 3:
Variable GLS OLS GLS OLS GLS OLS

Constant 0.94 0.860 0.977 0.917 0.895 0.834
41.514 27.498 43.616 29.844 20.798 12.835

Stock: Dummy variable 5 1 if 0.047 0.069 0.038 0.047 0.034 0.048
the insurer is a stock com- 2.912 3.572 2.477 2.559 2.286 2.620
pany, 0 otherwise

BESTSA(t 2 1) 5 Best’s A 0.006 20.016 0.009 20.008 0.013 20.007
or A1 rating(t 2 1) 0.331 20.717 0.501 20.376 0.744 20.314
Dummy Variable 5 1 if A
or A1, 0 otherwise

Traded: Dummy variable 5 1 0.044 0.023 0.040 0.018 0.035 0.017
if the insurer is a publicly 2.708 1.642 2.823 1.337 2.490 1.310
traded stock company, 0
otherwise

GLSHARE(t 2 1) 5 other 0.541 0.547 0.424 0.347 0.413 0.331
liability premiums 6.749 7.456 5.150 4.866 4.646 4.434
written(t 2 1)/total prem
written(t 2 1)

K(t 2 1) 5 total equity capi- 0.293 0.476
tal(t 2 1)/liabilities(t 2 2) 5.171 8.471

K(t 2 2) 5 total equity capi- 0.121 0.198 0.104 0.209
tal(t 2 2)/liabilities(t 2 3) 2.358 3.413 1.988 3.497

AYINC(t 2 1) 5 accident 0.654 1.233 0.551 1.103
year income(t 2 1)/liabili- 7.489 8.504 4.877 5.981
ties(t 2 2)

NEWCAP(t 2 1) 5 [capital 0.595 0.785 0.640 0.752
paid in(t 2 1) 2 div(t 2 5.260 4.677 5.088 3.854
1)]/liabilities(t 2 2)

LRAL(t 2 1) 5 loss reserve 20.406 20.297 20.462 20.214
adjustment(t 2 1)/liabili- 22.783 21.479 22.757 20.929
ties(t 2 2)

FIRMK(t 2 1) 20.038 0.004
21.638 0.155

INDUSK(t 2 1) 0.072 0.071
2.059 1.421

Adjusted R2 0.249 0.247 0.309 0.349 0.302 0.349
Sample size 405 405 405 405 405 405

Note. Dependent variable 5 PRICE 5 (net premiums written 2 underwriting expenses 2

dividends to policyholders)/(present value of accident year losses incurred). For each variable,
the top number 5 the coefficient and the lower number 5 t ratio. R2 is redefined in the GLS
models to use weighted sums of squares (Kmenta, 1986, equation (2.12)). GLS 5 generalized
least squares; OLS 5 ordinary least squares; lags are indicated by the notation (t 2 i), t 5

current period. The dependent variable is measured at period t. Insurer financial statement
data are from regulatory annual statements as reported on the A.M. Best Company data
tapes. In the PRICE variable, net premiums written 5 direct premiums written 1 reinsurance
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the sample period. This is consistent with the baseline assumptions of the
model with Qpb either # 0 (an increase in price elasticity) or . 0 but not
large enough to offset the negative terms in the numerator of Eq. (7) (see
also Table I).

Statistical tests reject the hypothesis that the coefficients on the three
components of the change in capital are equal.41 In particular, the coefficient
on the loss reserve adjustment LRAL t21 is smaller in absolute value than
the coefficients of AYINC t21 and NEWCAPt21 , providing evidence that a
retroactive loss shock has a less negative effect on price than capital shocks
from other sources.42 Thus, there is also some evidence that a shift in

41 In the OLS versions of Eqs. (2) and (3), F tests lead to rejection at the 1% confidence
level of the null hypothesis that the coefficients on the three components of the change in
capital are equal. In the GLS version of Eq. (2), the null hypothesis of coefficient equality
is rejected at the 10% level based on a x2 test. The hypothesis is rejected at the 1% level in
the GLS version of Eq. (3). The likelihood ratio test (a x2 test) is appropriate for testing
coefficient restrictions in the GLS regressions because we use the iterated version of the GLS
estimator, which converges to maximum likelihood estimates (Kmenta, 1986, p. 620). The
test results are as follows: Equation (2), OLS: computed F statistic 5 15.5 vs critical F(0.01,
2, 396) 5 4.61, where F(a, b, c) 5 critical F statistic at confidence level a with b and c degrees
of freedom. Equation (2), GLS: computed x2 statistic 5 5.5 vs critical x2(0.05, 2) 5 5.99 or
x2(0.10, 2) 5 4.61, where x2(a, b) 5 chi-square critical value at confidence level a with b
degrees of freedom. Equation (3), OLS: computed F statistic 5 13.1 vs critical F(0.01, 2,
394) 5 4.61. Equation (3), GLS: computed x2 statistic 5 9.3 vs critical x2(0.01, 2) 5 9.21.

42 Thus, the effect on price of capital depletions resulting from loss shocks is mitigated
somewhat relative to capital changes from other sources. For example, assume that LRALt21

is 20% of liabilities at the end of the prior year (a 20% loss shock) and that half of the dollar
value of the resulting capital loss is offset by retained earnings (AYINCt21) and half by new
capital (NEWCAPt21). Because the coefficient of LRALt21 is smaller in absolute value than
the coefficients of AYINCt21 and NEWCAPt21 , price would increase even though the ratio
of capital to liabilities would be lower due to the shock. The implied increase in price at the
sample mean price ratio based on Eq. (2) of Table II is 3.9% based on the GLS version of
the equation and 12.6% based on the OLS version (the results based on equation (3) are
similar). This is a hypothetical example; we do not intend to imply that any restoration of
capital would necessarily be in the amounts of proportions used in the example.

premiums assumed 2 reinsurance premiums ceded; and losses are discounted using U.S.
Treasury yield curves from Coleman, Fisher, and Ibbotson (1989) and industry-wide loss
payout proportions from A.M. Best Company, ‘‘Best’s Aggregates and Averages,’’ 1990, 1991.
BESTSA 5 1 if the insurer is rated A or A1 by the A.M. Best Co., 0 otherwise. Accident
year income 5 calendar year net income plus the loss reserve adjustment, where the loss reserve
adjustment is the component of calendar year losses incurred attributable to adjustments in
reserves for all prior years. In the variable NEWCAP(t 2 1), div(t 2 1) 5 dividends to
stockholders in year t 2 1. To obtain FIRMK(t 2 1) and INDUSK(t 2 1), we define K(t 2

1)/K(5), where K(t 2 1) 5 real equity capital in year t 2 1 and K(5) 5 average real equity
capital over the period t 2 2 to t 2 6. Real capital is obtained by deflating equity capital by
the CPI, with 1982 as the base year. INDUSK(t 2 1) 5 the predicted value from a regression
of K(t 2 1)/K(5) for the firms in the sample on the analogous value for the industry as a
whole; FIRMK(t 2 1) 5 the residual from this regression.
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demand, capital constraints, or an increase in the cost of capital may have
mitigated the negative impact of loss shocks on price during the sample
period. The coefficient of NEWCAPt21 is smaller than the coefficient of
AYINC t21 , except in the GLS version of Eq. (3), contrary to the hypothesis
that external capital is more costly than internal capital.

Equation (3) includes the two measures of capacity, INDUSK t21 and
FIRMK t21 . These variables are not implied by our model but are added
to test the Winter–Gron hypothesis. Comparing Eqs. (2) and (3), adding
the two measures of capacity does not raise the adjusted R2. Both variables
are insignificant in the OLS version of the regression. In the GLS version,
the systematic component INDUSK t21 is significantly positively related
to price, contrary to the capacity constraint theory.43 The coefficient of
FIRMK t21 is negative and marginally significant in the GLS version of Eq.
(3), perhaps providing some evidence of a positive price response to firm-
specific shocks that decrease the firm’s capacity.44

Stock firms have significantly higher prices than mutuals; and publicly
traded stock firms tend to have higher prices than nontraded firms, perhaps
reflecting the fact that more information is available on publicly traded
insurers, reducing information asymmetries and boosting prices. The pro-
portion of business in GL also has a significant positive relationship with
price. The Best’s rating is not significant at conventional levels, after control-
ling for capitalization.

Contributions of new equity. The theoretical model implies that an
insurer has an optimal capital structure, defined as an optimal ratio of
assets to liabilities (which may change over time depending upon market
conditions). Denoting the optimal asset-to-liability ratio as k, we have

At 5kLIABt5At21 1AYINC t 1NEWCAPt 2LRAL t 1(LIAB t2LIAB t21).
(11)

Rearranging terms,

NEWCAPt 5 (k 2 1)LIAB t 2 Kt21 2 AYINC t 1 LRAL t . (12)

43 Winter’s (1994) results also imply a positive relationship between price and transitory
deviations in surplus in the 1980s, in contrast to his finding of a negative relationship in
previous decades.

44 However, this result is most likely due to the fact that FIRMKt21 to some extent double
counts information already included in the three capital change variables (LRALt21 ,
AYINCt21 , and NEWCAPt21). When the capital change variables are omitted from the equa-
tion, the coefficients of both INDUSKt21 and FIRMKt21 are positive and statistically significant.
The bivariate correlations between FIRMKt21 and AYINCt21 , NEWCAPt21 , and LRALt21 ,
are 0.22, 0.30, and 20.17, respectively.
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If the asset-to-liability ratio is below k as the result of a loss shock, the
extent to which the optimal capital structure is attained through retained
earnings vs new equity depends on the effect of the shock on parameter
values (see Table I). A positive relationship between new capital and loss
shocks in our empirical tests would provide evidence that the conditions
for new capital issuance were satisfied during our sample period.

Table IV reports OLS, TSLS, and GLS estimates of Eq. (12) with other
control variables added. The GLS version of the model uses an instrumental
variables approach to control for the endogeneity of the price change vari-
able. The results are consistent with the hypothesis that firms have optimal
capital structures. New capital flows are positively related to the growth in
liabilities (LIAB) and inversely related to new flows of internal capital
(AYINC). New capital is also positively related to the retroactive loss
shock (LRAL), suggesting that firms tended to raise capital following shocks
during the sample period. This in turn suggests that shocks increase the qual-
ity elasticity of demand and/or the markup of price over marginal cost
sufficiently so that it is optimal to issue new equity (see Table I).

Capital flows are inversely related to the two capacity variables (INDUSK
and FIRMK).45 These results could be interpreted as contrary to the capacity
constraint theory, which implies that capital depletions due to shocks are
almost always replenished through retained earnings. On the other hand, the
results with the capacity variables could imply that shocks during this period
were large enough to cause insurers to reach boundary points at which raising
new capital is optimal under the assumptions of the capacity constraint theory
(see Winter, 1994).

The issue of new capital is positively related to the change in price (between
years t and t 2 1). The relationship is significant at the 5% level in the OLS
model and at the 10% level in the GLS model (one-tail tests), but is not sig-
nificant in the TSLS model. The results thus provide some support for the
hypothesis that capital markets look to price changes for assurance that infu-
sions of new equity will not raise the value of old liabilities sufficiently to
penalize shareholders.

Stock insurers raised more capital from external sources than did mutuals,
as expected since the sources of new capital to mutual insurers are very lim-
ited. There is a positive relationship between the traded-firm dummy variable
and new equity flows, although this variable is significant only in the GLS
equation. New equity issue is not significantly related to the GL premium
share. The Best’s rating variable has a negative coefficient and is significant
in the OLS and TSLS regressions but not significant in the GLS regression.

In equationsnot reported, we alsoestimated the new capitalequation using
lagged values of the asset and liability variables, which would be appropriate

45 The findings with respect to the other variables were qualitatively unchanged when the
two capacity variables were omitted from the equation.



TABLE IV
FLOWS OF EXTERNAL CAPITAL: 1980–1988

Variable OLS TSLS GLSIV

Constant 20.039 20.037 20.010
21.827 21.680 20.746

Stock: Dummy variable 5 1 if the insurer is a stock com- 0.011 0.011 0.009
pany, 0 otherwise 2.448 2.323 3.614

BESTSA(t 2 1) 5 Best’s A or A1 rating(t 2 1) Dummy 20.011 20.011 20.002
variable 5 1 if A or A1, 0 otherwise 21.940 22.001 20.478

Traded: Dummy variable 5 1 if the insurer is a publicly 0.004 0.004 0.008
traded stock company, 0 otherwise 1.258 1.251 23.146

GLSHARE(t) 5 other liability premiums written(t)/total 20.004 20.004 0.015
premiums written(t) 20.216 20.204 1.516

LIAB(t) 5 liabilities(t)/liabilities(t 2 1) 0.090 0.091 0.056
6.237 6.254 5.468

K(t 2 1) 5 total equity capital(t 2 1)/liabilities(t 2 2) 20.023 20.024 20.070
21.402 21.489 25.034

AYINC(t) 5 accident year income(t)/liabilities(t 2 1) 20.083 20.074 20.092
22.165 21.842 24.702

LRAL(t) 5 loss reserve adjustment(t)/liabilities(t 2 1) 0.202 0.216 0.185
4.302 4.343 6.015

price change(t) 5 PRICE(t) 2 PRICE(t 2 1) 0.028 0.013 0.028
2.266 0.553 1.535

FIRMK(t 2 1) 20.011 20.011 20.013
21.647 21.648 22.893

INDUSK(t 2 1) 20.031 20.034 20.021
22.919 23.003 23.513

Adjusted R2 0.273 0.264 0.390
Sample size 405 405 405

Note. Dependent variable 5 (inflows of new equity capital(t))/(total liabilities(t 2 1)). For
each variable, the top number 5 the coefficient and the lower number 5 asymptotic t ratio.
R2 is redefined in the GLS models to use weighted sums of squares (Kmenta, 1986, Eq. (2.12)).
OLS 5 ordinary least squares; TSLS 5 two-stage least squares; GLSIV 5 generalized least
squares with instrumental variables uded to adjust for endogeneity of PRICE CHANGE(t).
The lag structure is indicated by the notation (t 2 i), t 5 current period. BESTSA 5 dummy
variable 5 1 if the insurer is rated A or A1 by the A.M. Best Co., 0 otherwise. Accident
year income is defined as calendar year net income plus the loss reserve adjustment, where
the loss reserve adjustment is the component of a given year’s calendar year losses incurred
attributable to adjustments in reserves for all prior years. In the PRICE variable, net premiums
written 5 direct premiums written 1 reinsurance premiums assumed 2 reinsurance premiums
ceded; and losses are discounted using U.S. Treasury yield curves from Coleman, Fisher, and
Ibbotson (1989) and industry-wide loss payout proportions from A.M. Best Company, ‘‘Best’s
Aggregates and Averages,’’ 1990, 1991. To obtain FIRMK(t 2 1) and INDUSK(t 2 1), we
define K(t 2 1)/K(5), where K(t 2 1) 5 real equity capital in year t 2 1 and K(5) 5 average
real equity capital over the period t 2 2 to t 2 6. Real capital is obtained by deflating equity
capital by the CPI, with 1982 as the base year. INDUSK(t 2 1) 5 the predicted value from
a regression of K(t 2 1)/K(5) for the firms in the sample on the analogous value for the
industry as a whole; FIRMK(t 2 1) 5 the residual from this regression.

32
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if expected current values are best estimated by prior values. The results are
generally similar, although significance levels are lower.46

4. CONCLUSION

This paper provides new theoretical analysis and empirical evidence on
the relationship between loss shocks, capitalization, and price in insurance
markets. In our model, insurance is supplied by firms that are subject to
default risk. Demand is inversely related to insurer default risk and imper-
fectly price elastic due to factors such as information asymmetries and
private information in insurance markets. We generalize the standard risky-
debt model of the firm to include two classes of liabilities, ‘‘old’’ liabilities
generated by prior policies on which no further premiums can be collected
and ‘‘new’’ liabilities for policies priced and issued in the present. This
enables us to model the effect on price of a retroactive loss shock that affects
prior liabilities such as the shock associated with the liability insurance crisis
of the mid-1980s.

Our model predicts that price should be positively related to financial
quality. The model also implies that firms have optimal capital structures
because of the relationship between insurance demand and financial quality.
Thus, firms are predicted to raise capital in response to loss shocks and
other changes that increase leverage, unless such shocks severely increase
information asymmetries in capital markets. An inverse relationship be-
tween prices on new policies and loss shocks to prior liabilities is a plausible
(but not necessary) prediction of our model, depending on demand and
capital market conditions. Thus, our model is more general than the capacity
constraint theory, which imposes a zero insolvency-probability constraint
and predicts a positive relationship between loss shocks and price.

The empirical results are consistent with the predictions of the model.
Using firm-level data, we find that price is positively related to financial
quality, measured by the ratio of equity to liabilities. Price is inversely
related to loss shocks to prior liabilities during our sample period. However,
price is less responsive to depletions of capital from loss shocks to prior
liabilities than to changes in capital from other sources, suggesting that a
shift in demand, capital constraints, or an increase in the cost of capital

46 We also conducted Hausman tests of the endogeneity of LIAB(t) , AYINC(t) , and LRAL(t) .
These variables are possibly endogenously related to the dependent variable because insurers
can affect the reported values by manipulating loss reserves. If such manipulations are more
likely when new capital is being raised, an endogeneity problem could be present. Our tests
failed to reject the null hypothesis that these variables are exogenous. This may imply that
capital is more likely to be raised after announcements of legitimate reserve strengthening and
price increases that reassure capital markets that significant hidden liabilities are not present.
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may have mitigated the negative impact of loss shocks on price during the
sample period. Price is inversely related to firm-specific deviations of capital
from normal levels (GLS equation) but positively related to industry-wide
capital deviations.

Inflows of external capital are positively related to loss shocks, consistent
with the hypothesis that firms have optimal capital structures. We also find
some evidence that capital flows are positively related to price increases,
as predicted if capital markets require assurance that equity will not be
penalized to benefit prior liability-holders.

Our analysis of industry aggregate data indicates that prices, as measured
by average loading ratios rather than premium levels, increased only mod-
estly over pre-crisis levels following the sharp decline of the mid-1980s.
The more dramatic increases in premium levels seem to have been driven
primarily by increased loss expectations and declines in interest rates, and
capacity constraints do not appear to have played a significant role. Al-
though our model and empirical evidence provide an explanation for move-
ments in prices and capital flows during the crisis period, they do not
attempt to explain the shortages of coverage, changes in contract terms,
and ‘‘nonlinear’’ pricing which reportedly occurred during the crisis. These
features of the crisis were more likely caused by information asymmetries
and uncertainty about liability rules that made it unusually difficult for
insurers to price coverage for some classes of risks in the rapidly changing
environment of the mid-1980s. These factors are explored more fully else-
where in the literature (e.g., Priest, 1987, 1991; Berger and Cummins, 1992).

APPENDIX A: DERIVATION OF THE TWO-CLASS
OPTION MODEL

Consider an insurer with stochastic assets and two classes of stochastic
liabilities. Assume that assets and liabilities follow diffusion processes

dA 5 eAA dt 1 sAA dzA

dL1 5 eL1
L1 dt 1 sL1

L1 dzL1
(A1)

dL2 5 eL2
L2 dt 1 sL2

L2 dzL2
,

where A, L1 , L2 5 market values of assets and liabilities (classes 1 and 2),
eA , sA 5 drift and diffusion parameters for assets,
eLi

, sLi
5 drift and diffusion parameters for liability class i, i 5 1, 2,

dzA , dzL1
, dzL2

5 possibly dependent standard Brownian motion pro-
cesses.
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The Brownian motion processes are related as follows: dzA dzL1
5

rA1 dt, dzA dzl2
5 rA2 dt, dzL1

dzL2
5 r12 dt, where rAi , i 5 1, 2, 5 instanta-

neous correlation coefficients between the Brownian motion processes for
assets and liability classes 1 and 2, respectively, and r12 5 instantaneous
correlation coefficient for liability classes 1 and 2.

Both assets and liabilities are assumed to be priced according to an
intertemporal asset pricing model, such as the intertemporal capital asset
pricing model (ICAPM). The ICAPM implies the following return relation-
ships:

eA 5 rf 1 fA , for assets, and

eLi
5 rLi

1 fLi
, for liability classes i 5 1, 2,

where rLi
5 the inflation rate in liability class i, and

fj 5 the market risk premium for asset j 5 A, L1 , L2 .

The Fisher hypothesis is assumed to hold so that rf 5 rr 1 rI , where rr 5
the real rate of interest and rI 5 economy-wide rate of inflation. The
economy-wide rate of inflation will not in general equal the inflation rates
on the two classes of insurance liabilities. If assets (and liabilities) are priced
according to the ICAPM, the risk premium would be:

fj 5 rjm(sj/sm)[em 2 rf],

where em , sm 5 the drift and diffusion parameters of the Brownian motion
process for the market portfolio, and rjm 5 the correlation coefficient
between the Brownian motion process for asset j and that for the mar-
ket portfolio.

The value of an option on the two-liability insurance company can be
written as P(A, L1 , L2 , t), where t 5 time to expiration of the option.
Differentiating P using Ito’s lemma and invoking the ICAPM pricing rela-
tionships for assets and liabilities yields the differential equation

Prf 5 rfPAA 1 rL1
PL1

L1 1 rL2
PL2

L2 2 Pt

1
1
2

s 2
APAAA2 1

1
2

s 2
L1

L2
1PL1L1

1
1
2

s 2
L2

PL2L2
L2

2 (A2)

1 PAL1
AL1sA1 1 PAL2

AL2sA2 1 PL1L2
s12L1L2 .

Risk and the drift parameters (ej) have been eliminated by using the
ICAPM and taking expectations. It is also possible to do this by using a



36 CUMMINS AND DANZON

hedging argument, provided that appropriate hedging securities are
available.

The next step is to use the homogeneity property of the options model
to change variables so that the model is expressed in terms of the asset-
to-liability ratio x, the option value-to-liability ratio p 5 P/L, and the
liability proportions w1 5 L1/L and w2 5 L2/L, where x 5 A/L and L 5
L1 1 L2 . This requires the assumption that a lognormal diffusion approxi-
mation can be used for L1 1 L2 . The assumption about additivity of lognor-
mals is also used in the discrete time option pricing literature (e.g., Stapleton
and Subramanyam, 1984). The result is the differential equation

pr 5 xpxr 2 pt 1
1
2

x2pxxsn , (A3)

where r 5 rf 2 w1rL1
2 w2rL2

,
sn 5 sA 1 w2

1s
2
L1

1 w2
2s

2
L1

2 2w1sA1 2 2w2sA2 1 2w1w2s12 ,
sj 5 the diffusion parameter for process j( j 5 A 5 assets, j 5 1 5

liability class 1, and j 5 2 5 liability class 2), and
sjk 5 the covariance parameter for processes j and k.

Equation (A3) is the standard Black–Scholes differential equation, where
the optioned asset is the asset-to-liability ratio (x).

APPENDIX B: COMPANIES IN THE SAMPLE

Aetna Life & Casualty Group Liberty Mutual Group
Allstate Insurance Group Lincoln National Group
American Financial Group Motors Insurance Group
American General Group Munich Group
American International Group Nationwide Group
American Universal Group Northwestern National Group
Chubb Group of Insurance Companies Ohio Casualty Group
Cigna Group Orion Group
Cincinnati Financial Group PMA Group
Commercial Union Insurance Companies Prudential of America Group
Continental Insurance Companies Reliance Insurance Companies
CNA Insurance Companies Royal Insurance Group
Crum & Forster Companies St. Paul Group
Electric Mutual Group Sentry Insurance Group
Employers Reinsurance Group Skandia America Group
Employers of Texas Group State Farm Group
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Farmers Insurance Group Swiss Reinsurance Group
Federated Mutual Group Transamerica Insurance Group
Fireman’s Fund Companies Travelers Insurance Group
General Reinsurance Group United States F&G Group
Hartford Insurance Group W.R. Berkley CP Group
Home Group Insurance Companies Zurich Insurance Group—U.S.
Kemper Group
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