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ABSTRACT

This article introduces to the statistical and insurance literature a mathemati-
cal technique for an a priori classification of objects when no training sample
exists for which the exact correct group membership is known. The article
also provides an example of the empirical application of the methodology
to fraud detection for bodily injury claims in automobile insurance. With
this technique, principal component analysis of RIDIT scores (PRIDIT), an
insurance fraud detector can reduce uncertainty and increase the chances of
targeting the appropriate claims so that an organization will be more like-
ly to allocate investigative resources efficiently to uncover insurance fraud.
In addition, other (exogenous) empirical models can be validated relative to
the PRIDIT-derived weights for optimal ranking of fraud/nonfraud claims
and/or profiling. The technique at once gives measures of the individual
fraud indicator variables’ worth and a measure of individual claim file sus-
picion level for the entire claim file that can be used to cogently direct further
fraud investigation resources. Moreover, the technique does so at a lower
cost than utilizing human insurance investigators, or insurance adjusters,
but with similar outcomes. More generally, this technique is applicable to
other commonly encountered managerial settings in which a large number
of assignment decisions are made subjectively based on “clues,” which may
change dramatically over time. This article explores the application of these
techniques to injury insurance claims for automobile bodily injury in detail.
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FRAUD CLASSIFICATION USING PRINCIPAL COMPONENT ANALYSIS RIDITs
Insurance investigators, adjusters, and insurance claim managers are often faced with
situations where there is incomplete information for decision making concerning the
validity or possible fraudulent status of a particular filed claim. In all circumstances,
strategic and tactical decisions must be made anyway, such as whether to pay the
claim, refer the file to a special investigative unit (SIU), or even refer the case to the
legal department or attorney general’s office. Typical of these situations are instances
in which an automobile accident occurs and a claim is filed for bodily injury involving
injury to the soft tissue (Weisberg and Derrig, 1991, 1992; Weisberg et al., 1994). There
may have been no witnesses to the accident and no police report filed, and the claim-
ant may not have sought medical treatment for days following the accident. In these
and other similar types of situations, suspicion levels may be high, and being able to
classify claims according to their potential for successful negotiation or prosecution
for fraud would be useful. Perhaps more important, the ability to separate out the
bulk of filed claims that are apparently valid, and to pay them quickly, not only frees
up needed investigator resources, but also creates goodwill with the insuring public
and helps to dispel slow-payment and bad faith settlement lawsuits. The problem,
of course, is that, in a statistical sense, in these situations the criterion variable (in
this case, the knowledge of whether fraud actually occurred in a particular case) is
not obtainable before decision-making action must be taken and never will be known
for the vast majority of the claims.1 This type of problem is faced not only by fraud
investigators, but also by many other managerial decision makers for whom deci-
sions must be made without having access to a sample frame containing the known
dependent variable needed to apply traditional discriminant analysis type modeling
techniques (probit, logit, feed forward-back propagation neural networks, and so on)
or regression analysis.2

1 According to a study of Massachusetts auto insurance, 72 percent of auto injury tort claims
filed in 1991 did not result in litigation. Of those that did result in litigation, about 99 percent
were settled before an actual jury verdict was reached (Weisberg and Derrig, 1991). Conse-
quently, the number of situations in which one can actually observe the true value of the de-
pendent variable (legal determination of fraud or legally not provable as fraud) is quite small
(0.28 percent). This is different from situations such as random audits by the IRS, which can
be useful for developing classification functions in that in these latter cases a sample of
known results exists upon which to base modeling estimates. Randomly pursuing litiga-
tion for fraud in insurance claims can result in excessive legal fees, terrible public relations,
regulatory sanctions, and multiple damages!

2 The underlying available information assumptions necessary to perform PRIDIT analysis
differ from (are less stringent than) those required of regression, probit, logit, discriminant
analysis, or other “classification” methodologies that rely on having “training samples” from
the fraud and the nonfraud groups. The PRIDIT methodology does not require a knowledge
of which respondents indulged in fraud in order to implement it; that is, it does not require
delineation of a sample of cases in which the occurrence of fraud together with its covariates
are known as well as a delineation of a sample of cases in which the absence of fraud together
with its covariates are known—this is how it differs from regression, discriminant analysis,
and so on. One cannot fit a regression model without a dependent variable. In the artificial
intelligence literature the regression, probit, logit, discriminant, and neural network analysis
information scenario is known as “supervised learning.” One knows the correct classification
for some group of respondents and can “supervise,” or optimize, the estimation process for
selecting parameter values in such a manner that the model optimally distinguishes between
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In short, we have a set of claims, some of which are fraudulent and some of which are
not, and we do not know which is which. How do we assign claims to each of these
two groups? The problem can be stated generally as assignment of members of a pop-
ulation to one of two subgroups. Although that problem is common in managerial
settings, for consistency and succinctness, the discussion throughout will be framed
in terms of the fraud detection nomenclature.

BACKGROUND AND MOTIVATION FOR THE RESEARCH
Frequently, a substantial amount of information about a particular filed insurance
claim is known, but we do not know how to classify it according to its validity. Stan-
dard types of statistical techniques (discriminant analysis, probit, logit, feed forward-
back propagation neural networks, and so on) require the insurance investigator or
claims adjuster to use existing information on a set of claims previously classified
as fraudulent or nonfraudulent to develop a scoring program for new claims (Artís
et al., 1999; Weisberg and Derrig, 1998) and require interval-level numerical data for
the statistical analysis. For example, a typical application for classical statistical fraud
detection would be to use data on fraudulent and nonfraudulent credit card transac-
tions to develop a model that would allow the classification of new claims according
to their prospective likelihood of being fraudulent. For a recent approach to modeling
fraud in this context, see Belhadji et al. (2000).

More traditional techniques, such as regression, discriminant analysis, and logistic
regressions, are no longer useful when the cost of obtaining valid information on the
criterion variable (fraud versus nonfraud) is excessive or when such information is
impossible to obtain from a practical standpoint. A study using matched claim files of
those convicted of fraud and those not convicted of fraud, for example, would very
likely still be biased—it is very difficult to prosecute and obtain a conviction for fraud
(so those who would be convicted would yield only the most obvious and extreme
cases). Moreover, the set of claims classified by the legal system as nonfraudulent can
be contaminated by unconvicted or unrecognized fraud cases (Caron and Dionne,
1999; Dionne and Belhadji, 1996). In addition, although we might have historical
information concerning the proportion of those claims that we suspect are fraudu-
lent to those that are not, information may not be available on the same claim files
concerning both the predictor and criterion variables so that classification informa-
tion is actually exogenous to the data set for modeling fraud likelihood. Given a set of
such predictor variables, it is neither practical nor legal to wait for the data collection
process to be exhausted in order to obtain a complete set of predictor and criterion
variables on the same individuals and make a decision. Moreover, perpetrators of
fraud have a “learning curve,” so even if all of the obstacles to classical analyses just
noted could be overcome, the predictor variables may change significantly over time,
rendering these methods powerless.

the known correctly classified subset of cases. Regression, probit, logit, discriminant, and
neural network analyses require both the existence and the knowledge of an already classi-
fied set of data, whereas PRIDIT analysis does not. In the artificial intelligence literature this
latter situation is known as “unsupervised learning,” wherein one does not have a training
set containing the covariates and the dependent variable. Consequently, one cannot super-
vise or optimize the estimation process for selecting parameter values in such a manner that
the model optimally distinguishes between a known correctly classified subset of cases.
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Since which claims are fraudulent and which are not is unknown in the context of this
study, the claims adjuster or insurance investigator could use a rigorous methodol-
ogy to augment investigative procedures within budget, time, and data availability
constraints, requiring only data on the gathered fraud predictor variables. One rela-
tively complex method that has been used is the Kohonen Self-Organizing Feature
Map3 applied to so-called fraud, or suspicion of fraud, indicators4 (Brockett et al.,
1998). This article presents a new and simpler nonparametric technique (PRIDIT) that
is more easily understood and implemented and can satisfy this managerial need.
Applications of the PRIDIT methodology can also extend to classifications finer than
the instant binary fraud/nonfraud case. This new methodology provides additional
value in its ability to test the consistency of scoring model output with input variable
patterns. Specifically, the weights and scores obtained from the PRIDIT methodology
are representative of input variable patterns and can be tested for correlation with
otherwise determined model scores. For example, if a set of insurance adjusters’ sub-
jective assessments of claim file fraud suspicion levels existed, then these could be
correlated with the PRIDIT scores for the claim files and hence validated. In addition,
PRIDIT score correlations with exogenous variables could be used for “profiling”
if desired (for example, target marketing if used in a marketing context, or “red-
flagging” in an insurance context). As we shall demonstrate, high absolute correla-
tions indicate consistent modeling scores.

FRAUD INVESTIGATION FROM A STATISTICAL PERSPECTIVE
One potential statistical approach that might be used by fraud investigators to aid
decision making in claim handling situations when the dependent variable is un-
known is to model the total data set of predictor variables as a probabilistic mixture
of two groups, each having some known parametric form, and where the classifica-
tion or criterion variable (the group membership variable) is itself treated as being
unknown or missing. One might then use this unclassified initial sample to obtain
the parameter estimates necessary to form classical likelihood ratio or discriminant
functions. For example, Ganesalingam and McLachlan (1978) considered the situation
where the data obtained arise from a mixture of two univariate normal distributions
with common variance σ2 and means µ1 or µ2 depending upon whether the (unclass-
ified) observation was made from group one or two. If the proportion from group
one is θ, then the likelihood equation corresponding to this mixture can be explicitly
written down and maximized to obtain estimates of the four unknown parameters µ1
or µ2; σ

2 and θ. These are then inserted into the likelihood ratio (discriminant) function
for possible future classification of new observations. While in theory the situation of
(unclassified) multivariate normal observations from each group might be handled
analogously, the number of parameters to estimate grows very quickly. More generally,

3 Like the PRIDIT methodology introduced in this article, the Kohonen Self-Organizing Fea-
ture Map methodology uses unsupervised learning; that is, without feeding back knowledge
of the dependent variable, in a neural network-type format. However, the Kohonen method
is more difficult to implement and fails to give the same information to the fraud investigator
as the proposed methodology.

4 Fraud indicators in this automobile insurance context are often binary response statements
about the circumstances of a claim, with a positive response indicating increased likelihood
of fraud (Canadian Coalition Against Insurance Fraud, 1997).
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the EM algorithm and imputation of missing data techniques could be used in this
statistical parametric approach (see Rubin, 1976).

However, several major differences exist between the types of problems addressed
by fraud investigators investigating bodily injury claims and the types of problems
solved by the above statistical techniques. Some of the major differences impact the
usefulness of the statistical mixture methodology for fraud detection and are described
below.

1. The type of data: Often claim files contain data collected in a categorized fashion or
variables of interest categorically grouped into a fixed number of ordinal categories.
Hence, the data requiring analysis by fraud investigators are, statistically speaking,
discrete and ordinal, but with no natural metric scale. (The useful variable obtained
from the subjective assessments of a “claims-wise” claimant is an example [Weisberg
and Derrig, 1998]). Most standard parametric statistical methods require interval-level
data, often continuous and normally distributed (however, see Rubin, 1976).

2. The model: The underlying stochastic processes that give rise to the unclassified
observations for the two groups (fraud versus nonfraud) are generally of unknown
parametric form. In particular, a simple multivariate stochastic model with only a few
parameters to estimate from each group cannot be reasonably assumed at the advent
of the analysis.

3. The classification function: The fraud investigator not only has an interest in being
able to discriminate between the groups, but also wants to obtain a one-dimensional
“suspicion level score” for each claim. The investigator desires that this score allow
for ranking claim files and for performing a correlation analysis with each of several
exogenous variables, such as demographics and behavioral data or fraud assessment
records of the claims adjusters. Thus, for fraud investigation, the classification func-
tion is at least as important as the classification rule, since it can lead to the potential
for obtaining a measure of external validity of the methodology. In most clustering
techniques or Kohonen feature maps (which also use unsupervised learning), an
ordinal score is not associated with each claim file to indicate how strongly each
claim is associated with membership in the fraud group. This ability to obtain claim
scores capable of being used by the investigators and adjusters in their analysis and
decision making can aid significantly in classifying claims into fraud and nonfraud
groups.

4. The validity of the instrumental variables: Since each variable costs money and
time to gather, the fraud investigator is also generally interested in determining the
relative worth of each predictor variable for discriminating between the fraud and
nonfraud groups. This would be the analog of a coefficient in a regression, or the
standardized discriminant coefficient in a supervised learning context were the
dependent variable actually an observable dichotomous variable. This situation is
desired because certain variables are more costly or time-consuming to obtain (such
as depositions and independent medical examinations) and should be evaluated rela-
tive to their worth for distinguishing fraud from nonfraud claim files. Moreover, add-
ing variables shown to be of dubious value can actually decrease the ability of the
analysis to distinguish cases.
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We shall show mathematically and empirically that PRIDIT analysis (using principal
component analysis in conjunction with RIDIT scoring) achieves the above goals even
though the technique does not presuppose the delineation of group membership prior
to analysis (uses unsupervised learning) and uses rank-ordered categorical data that
may not be interval level.

In the next section, we present the mathematical foundations of the PRIDIT method-
ology, discussing the scoring of qualitative or quantitative ordinal variables. We show
how to use PRIDIT analysis to obtain a theoretically justified measure of “variable dis-
criminatory power” for each individual fraud indicator variable within a claim file and
an overall individual fraud suspicion-level score for each claim file. We then demon-
strate how to attain all the goals of the analysis described in the Introduction. We
then present empirical results of an application of PRIDIT to fraud assessment of
bodily injury claims in automobile insurance, with a discussion and conclusions.
Observe that the PRIDIT methodology has been used successfully in a number of
other fields, including epidemiology.5

AN OVERVIEW OF PRIDIT FOR DISCRETE ORDINAL DATA
PRIDIT analysis is, essentially, a technique that scores the contents of a claim file on a
set of predictor (independent) variables individually and as a whole. Through a com-
putational algorithm, all claim files can be ranked in order of decreasing suspicion
levels and, if desired, can be assigned to group membership (fraud/nonfraud) on the
basis of this scoring. Simultaneously, and equally important, a measure of individual
predictor variable discriminatory power can be obtained. Details on the mathematical
foundations of the algorithms are given in Appendix A.

ASSIGNING NUMERICAL SCORES TO THE CATEGORIES OF QUALITATIVE
ORDINAL VARIABLES
The basic task faced in using PRIDIT analysis is to develop a relative ranking of each of
the claim files according to an underlying latent variable (fraud likelihood in this case)
when the criterion variable (actual determination of fraud or nonfraud) is not observed
even for a subsample. Various scoring techniques for ranked ordered categorical data
have been investigated both empirically and theoretically by Brockett (1981), Brockett
and Levine (1977), and Golden and Brockett (1987). Natural integer scoring (that is,
increasing integer scoring wherein one simply assigns, for example, the numbers 1, 2,
3, 4, and 5 to the five permissible categorical responses for a variable) is a usual
“default” method used by most researchers and practitioners who then apply classical
statistical methods. In reality, however, the use of these classical statistical methods
presupposes that the underlying input data are interval-level metric data (often with
a specific statistical distribution as well), and hence presupposes that this natural
integer scoring method creates interval-level metric data with “equal interval” spacing
between categories. In fact, natural integer scoring may lead to qualitatively different
results from, say, scoring questions to approximate normality or some other scoring
method when the data are ordinal and non-interval-level. When used in statistical
analysis, integer scoring can result in different variables being labeled as “significant”
than would occur if a different scoring method were used on the same data set. In

5 A brief description of an epidemiological study using this methodology is given subsequently.
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an empirical study, Golden and Brockett (1987) found that another scoring method
called RIDIT scoring, introduced by Bross (1958), produced the best results for several
different distinct types of standard statistical analysis and, overall, was a superior
scoring method for rank-ordered categorical variables, outperforming natural scor-
ing in several respects.

In choosing a scoring mechanism incorporating the ranked nature of the responses
and also the empirical response probabilities observed for the categories, we follow
the development outlined in Brockett and Levine (1977) and Brockett (1981). This
section summarizes this development. Intuitively, the scoring objective is to quantify
the level of fraud suspicion produced by a categorical characterization of a particular
indicator variable in the claim file. In addition, one desires to simultaneously obtain
an overall fraud suspicion score for each entire claim file.

Let kt denote the number of ranked response categories available for fraud indicator
variable t, and denote the observed response proportions for the entire set of claim files
by p̂t = (p̂t1; : : : ;p̂tkt ): Assume that the response categories are ordered in decreasing
likelihood of fraud suspicion so that a higher categorical response indicates a lesser
suspicion of fraud. For the categorical option i to variable t, assign the numerical value
or score:

Bti =
∑
j<i

p̂tj −
∑
j>i

p̂tj i = 1; 2; : : : ;kt: (1)

We shall call this score the RIDIT score for the categorical response value.6

This procedure transforms any set of categorical responses into a set of numerical
values in the interval [−1; 1] which reflect the relative “abnormality” of the particular
response. For example, for a binary response fraud indicator variable (in natural inte-
ger scoring, we might write that 1 = yes and 2 = no) a “yes” might be more indicative
of potential fraud than a “no.” Assuming, for example, that 10 percent of the claim
files indicate a “yes” on this variable and 90 percent a “no” response, calculate the
scores Bt1 (“yes”) = −0:9 and Bt2 (“no”) = 0.1. This scoring mechanism then produces
numerical values to assign to each category—we would use −0:9 instead of 1 and 0.1
instead of 2 in the analysis. Just like natural integer scoring, the RIDIT score calcu-
lated in Equation (1) increases as the likelihood of fraud decreases, but unlike natural
integer scoring, it also reflects the extent or degree to which the particular response is
abnormal, and in which direction. Another binary response fraud indicator variable
with 50 percent of the claim files indicating a “yes” on this variable and 50 percent a
“no” response would have resulted in the same natural integer scores as above, but
would result in RIDIT scores of −0:5 and 0.5, respectively, indicating to the analyst
that a “yes” on the first indicator variable is more abnormal than that of a “yes” on the
second indicator variable (−0:9 versus −0:5). Table 1 shows how the numerical trans-
formation works for the medical treatment indicator variables used in the Weisberg
and Derrig (1999) study.7

Effectively, this scoring method produces a variable score for a claim indicator vari-
able which is positive when most claims result in a “lower” ranked category for this

6 This score is actually a linear transformation of the RIDIT scoring method first introduced by
Bross (1958) for epidemiological studies, but the version in Equation (1) is more convenient
for our analysis.

7 The description of all fraud indicators used in the study is attached as Appendix B.
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TABLE 1
Computation of PRIDIT Scores

Variable Proportion
Variable Label of “Yes” Bt1(“Yes”) Bt2(“No”)

Large number of TRT1 44% −0:56 0.44
visits to chiropractor

Chiropractor provided 3 or more TRT2 12% −0:88 0.12
modalities on most visits

Large number of visits to TRT3 8% −0:92 0.08
a physical therapist

MRI or CT scan but no TRT4 20% −0:80 0.20
inpatient hospital charges

Use of “high-volume” TRT5 31% −0:69 0.31
medical provider

Significant gaps in TRT6 9% −0:91 0.09
course of treatment

Treatment was unusually TRT7 24% −0:76 0.24
prolonged (> 6 months)

Independent medical examiner TRT8 11% −0:89 0.11
questioned extent of treatment

Medical audit raised questions TRT9 4% −0:96 0.04
about charges

variable (that is, most claims are more likely to be fraudulent than the instant claim)
and negative if most claim files have a “higher” ranked response category (are more
likely to be nonfraudulent than the instant claim) for that variable. Note, for example,
that a “yes” on TRT9 in Table 1 is much more extreme and indicative of fraud than is
a “yes” on TRT1, even though both would have the same natural integer score.

Moreover, consistent with the ranked-order categorical nature of the variables, the
scoring method is monotonically increasing (higher numerical scores corresponding
to higher ordered categorical classification options and hence a higher likelihood of
being nonfraudulent) and each score is “centered” overall so that the expected
value

∑
i P̂tiBti = 0 for each fraud indicator variable (t). Unlike natural integer scor-

ing, however, this scoring method does not presuppose an equal distance between
the categories. Together with some other intuitively reasonable assumptions,8 one
can prove that these characteristics of a scoring method essentially characterize the
scoring system Bti (see Brockett, 1981; Brockett and Levine, 1977).

Since all variable scores are scaled to the same [−1;1] scale, predictor variables with
vastly different numbers of potential categories into which a claim might be classified
become readily comparable so that a high answer on a question with ten classifi-
cation options is not viewed as twice as influential on a summative overall fraud
suspicion score as a high classification option on a variable with five classification

8 The assumptions leading toBti are detailed in Brockett and Levine (1977) and Brockett (1981),
and include the assumption that Bti should increase in the categorical option (i).
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options. In fact, Brockett (1981) proves mathematically that our scoring scheme makes
the empirical frequency curve for the variable as close to uniform on [−1; 1] as possi-
ble, using the Kolmogorov-Smirnof distance measure, so all the predictor variables are
initially on equal footing in terms of distribution. This scoring technique is analogous
to ipsative methods (Clemens, 1956), but without the necessity of assuming equal
intervals between categories. It eliminates the necessity of assigning integer values in
an ad hoc fashion (as is done with natural integer scoring) and improves the statistical
characteristics of the resulting scored data for subsequent standard statistical analysis,
whatever it is. More important for the purposes of this article, it opens the door to
creating an entirely new methodology for quantitative fraud detection for the entire
claim file. This is discussed in the next section.

ASSESSING THE DISCRIMINATORY POWER OF THE PARTICULAR FRAUD VARIABLES
AND OBTAINING OVERALL FRAUD SUSPICION SCORES FOR ENTIRE CLAIM FILES
Let F = (fit) denote the matrix of individual PRIDIT variable scores for each of the
t = 1; 2; : : : ;m variables, for each of the i = 1; 2; : : : ;N claim files—that is, fit = Btk if
claim file i contains categorical response level k to variable t. Obtain an overall sus-
picion score for each claim file by simply adding the respective individual variable
scores.9 In matrix notation, let W (0) = (1; 1; : : : ;1)′, the prime denoting transpose. Then
the vector of simple overall summative fraud suspicion scores obtained for each claim
file in matrix notation is S(0) = FW (0). Now, by taking the normalized scalar product
of the set of claim file overall summative fraud suspicion scores with their individual
variable t scores, we get a measure of consistency of indicator variable t with the over-
all fraud suspicion scores for the claim files (see Sellitz, 1964). This measure is similar
in nature to the Cronback ˛ measure of reliability used in questionnaire analysis to
assess the consistency of individual questions with the overall questionnaire score.
Thus, W (1) = F ′S(0)=||F ′S(0)|| can be viewed as a system of “weights” for the individual
variables in the set of claim files, where the components of W (1) give the normalized
product of the indicator variable t with overall claim file scores and measure the con-
sistency of the individual variable being weighted to the overall score for the claim
file. A larger value for W (1) indicates a larger consistency of this variable t with overall
suspicion level determined for the entire claim file.

It now makes sense, since we know which variables are more consistent, or “better
judges,” of overall fraud suspicion for the set of claim files, to give higher weight in
our analysis to these “better” variables and hence to calculate a “weighted” claim file
score for each claim file, giving higher weight to better judges (fraud variables) as
follows. Using the components of W (1) as variable weights yields a weighted overall
vector of fraud suspicion scores S(1) = FW (1) for the set of claim files. However, there
is no need to stop now. Using this “better” assessment of overall fraud suspicion for
each claim, we can now obtain an ever better measure of overall fraud suspicion score
for the claim file by “correlating” the individual scores with this new better overall

9 This initial value of suspicion scores corresponds to the naive model of counting the number
of fraud indicators. This simple counting method for indicator variables is common in sev-
eral areas (such as in an early warning system for insurer insolvency used previously by the
Texas Department of Insurance). As we shall see, this simple summative scoring method for
claim files can be improved by further analysis.
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score. This in turn can be correlated again with the individual variable scores to get
even better weights, W (2) = F ′S(1)=||F ′S(1)||. New weights can then be used to get a
better weighted summative claim file score, and this new set of overall fraud suspicion
scores can then again be correlated with the individual variable t scores to get new
weights, and so on.

The theorem in Appendix A ensures that this mathematical process converges, and it
shows that this limiting weight for fraud indicator variable t is actually proportional
to a discriminatory power measure At developed in Appendix A. Specifically, the

limiting variable weight Ŵ
(∞)

is the first principal component of F′F, which is a con-

sistent estimate of principal component Ŵ
(∞)

of E[F′F], the tth component of which
is explicitly

W (∞)
t =

At

(�1 − Utt)

√
m∑
s=1

A2
s=(�1 − Uss)2

; (2)

where �1 is the largest eigenvalue of E[F ′F], and for each s; Uss is the uniqueness
variance in a factor analysis model of RIDIT scored fraud suspicion variables E[F ′F].
Here

At =
kt−1∑
i=1

∑
j>i

{
�(1)
ti �

(2)
tj − �(2)

ti �
(1)
tj

}
; (3)

where �(1)
tj is the proportion of the fraud or group 1 claims that fall into category j on

fraud indicator variable t and �(2)
tj is the proportion of the nonfraud or group 2 claims

that fall into category j on fraud indicator variable t.

The theorem proven in Appendix A is interesting for several reasons. Since the limiting
weights are proportional to At=(�1 −Utt), and because we may estimate this limiting

weight by Ŵ
(∞)

, the first principal component of F ′F, �1 by �̂1, the largest eigenvalue
of F ′F, and the uniqueness variances via a factor analysis subprogram yielding the
diagonal uniqueness variance matrix Û, we may easily estimate the vector of relative

question discriminatory power values by (�̂1I − Û)Ŵ
(∞)

. Thus, as long as an under-
lying discriminating combination of variables exists, up to a common multiplier, an
estimate ofAt, the contingency table measure of association for variable t, can be found
using principal component and factor analysis without ever having to know which
claim files belong to which groups and in which proportions! Our measure of variable
importance is thus validated.

It should be emphasized that using principal component analysis to weight variables
is not new (Daultrey, 1976). However, in general there is no guarantee that the result
will have any meaningful statistical interpretation. We have shown here that by using
our particular scoring system a useful interpretation exists in terms of the discrimina-
tory power At of the variable and also an interesting connection between contingency
table analysis, principal component analysis, and factor analysis. There is no guaran-
tee that this occurs with other scoring systems, such as the natural integer scoring so
commonly used.

To aid in fixing ideas, we interject here an example from an epidemiological study of
the health effects of rural-to-urban migration in Senegal (Benyouseff et al., 1974). One
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goal of the study was to test the idea that people who do not adapt to urban life are at
greater risk for disease. To this end, a questionnaire was designed consisting of 59
ordinal questions about different types of social behavior that were indicators of
adaptation, such as regular employment, frequenting clubs, use of radios, and lan-
guage spoken. The questionnaire was meant to classify the migrants into two groups,
adapters and non-adapters, according to whether the scores were positive or neg-
ative. An example of a question was “Who are your close friends?” with these
ordered categorical responses: (1) only those from my village, (2) only from my tribe,
(3) about the same number from my tribe and the town, and (4) mostly from the
town. Three hundred migrants were interviewed. The resulting PRIDIT analysis pro-
duced 7 questions out of the 59 with weight At not significantly different from 0. By
examining the relationship of PRIDIT scores with other health-related indicators, the
non-adapters were found to be at significantly greater risk for disease than the general
population of migrants.

This study illustrated three uses of the PRIDIT analysis also relevant to the analysis
of fraud. First, it enabled a reduction in the number of factors (variables) needed to
divide respondents into relevant groups, a boon to future investigations into this mat-
ter; second, it provided a criterion for group membership through the score of each
individual. Finally, it provided a quantitative measure of a qualitative variable (adapt-
ability); this quantitative measure provided the capability to determine correlations
with other quantitative measure such as prevalence of a disease and morbidity.10

CLASSIFYING CLAIMS BY PRIDIT SCORES
With respect to classification, consider two cases for the proportion of group 1 claims,
� known and � unknown. When � is known, arrange the N claim files via their one-
dimensional scores S =

∑m
t=1 W

(∞)
t Xt and then classify the first Nθ claim files into the

high fraud suspicion group 1. Here Xt is the claim file’s calculated score obtained for
variable t, Xt =

∑kt
i=1 BtiI[cateogry i given] where IA is the indicator of the set A.

If θ is unknown, break the two groups according to positive or negative overall scores
and classify claims into the low-suspicion group if the overall fraud suspicion score is
positive.11 Refer to these two methods as the ranking method and the algebraic sign
method, which roughly correspond to priors proportional and priors equal, respec-
tively, in a discriminant analysis (although, of course, PRIDIT analysis does not require
data on actual group membership). In any event, at this stage the claim files have all
been linearly ordered in terms of their potential suspicion levels and simultaneously
a measure of worth for each individual fraud indicator has been obtained, as desired
at the onset of the analysis. Whether using the ranking method or the algebraic sign
method, the analyst can quickly dispose of numerous claim files that are apparently
non-fraudulent, pay the claims, and focus attention and resources in a hierarchical

10 Note that the use of regression or other supervised learning type techniques would be
impossible in this unsupervised learning environment (as is also the case in fraud for bodily
injury claims). Only exogenous validation is possible.

11 Rigorous statistical methods also exist for estimating � and for reassigning membership in
the two groups based on the estimate. See Levine (1991) for details. However, by this meth-
odology, only those with scores close to zero may be reassigned. For practical purposes, this
reassignment does not affect the procedures proposed here.
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manner on the most suspicious claims for subsequent investigation. In many appli-
cations the ability to dispose of (pay) the multitude of apparently valid claims is an
important cost-effective step forward and one which can be automated (via PRIDIT
analysis) for even further economic savings.

AN EXAMPLE USING THE TREATMENT VARIABLES FROM THE AUTOMOBILE
INSURERS BUREAU
The study reported in Weisberg and Derrig (1998) tracked 65 fraud indicators across
127 bodily injury claims (see Appendix B for a listing).12 In addition to the treatment
variables shown above in Table 1 (9), indicator variables pertained to the accident (19),
the claimant (11), the insured (8), the injury (12), and lost wages (6). For each of 127
claim files, senior claim managers (adjusters) recorded the presence (yes) or absence
(no) of each of the 65 fraud indicators. In addition, for comparison purposes, adjusters
recorded the overall assessment or suspicion scores for each individual claim file on
a zero-to-ten scale for each fraud indicator category as well as an overall claim sus-
picion score. Senior investigators from the Insurance Fraud Bureau of Massachusetts
(investigators) independently reviewed the same files, together with the adjusters’
indicator choices, and produced their own zero-to-ten suspicion assessment of each
claim file. These sample data allow illustration of the PRIDIT technique when � is
known,13 along with a consistency test of model suspicion scores.

Table 2 shows the PRIDIT Ŵ
∞

weights for the nine treatment14 variables described in
Table 1. Also shown are the regression model weights using the adjusters’ suspicion
score as the dependent variable and natural integer scoring for the variables.15

Notice that indicator variables TRT6 and TRT7 carry the heaviest weight in scoring
the 127 claim responses on their own response pattern (the factor analysis estimation
of weights by PRIDIT), but they carry no significant weight in aligning the response
pattern to the suspicion scores from the adjuster coders. This is the same type of
inconsistency between fraud indicators and suspicion score assignments revealed by
unsupervised neural network clustering (Brockett et al., 1998). This type of inconsis-
tency typifies systematic weaknesses when subjective, or multiple observer, data are
used.16 Variables may be “missed” or “understated” by human adjusters due to a

12 These fraud indicator and suspicion score data also underlie the Brockett et al. (1998) neural
network clustering of claims.

13 In this case, � was known in the sense that 62 claims were assessed to be fraud by at least one
coder (27 by adjuster but not investigator, 16 by investigator but not adjuster, and 19 by both
adjuster and the investigator) and 65 claims were randomly chosen from claims assessed by
all coders as nonfraud (Weisberg and Derrig, 1998).

14 Appendix B shows the 65 weights when considered by category and when all indicators are
considered at once. Table 1 and Appendix B give the verbal description of the variables.

15 Significant regression coefficients are used as weights in a scoring model on claims subse-
quent to the training (regression) data.

16 The internal inconsistency of the claims adjusters and claims investigators is also noted in
Brockett et al. (1998) and occurs, in part, because investigators and adjusters focus differently
on variables. The PRIDIT method is, however, nonsubjective and does not focus on specific
variables, but rather gives higher weight to variables that seem to distinguish the high group
(nonfraud) from the low group (fraud), yielding an ultimate claim file score. In addition, the
regression weights reflect, in part, the subjective evaluation of the investigator or adjuster. In
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TABLE 2
Weights for Treatment Variables

Variable PRIDIT Weights W (∞) Regression Weights

TRT1 0.30 0.32***

TRT2 0.19 0.19***

TRT3 0.53 0.22***

TRT4 0.38 0.07

TRT5 0.02 0.08*

TRT6 0.70 −0:01

TRT7 0.82 0.03

TRT8 0.37 0.18***

TRT9 −0:13 0.24**

Regression significance shown at 1 percent (***), 5 percent
(**), or 10 percent (*) levels.

number of subjective reasons. Such inconsistencies also highlight the need for a “track-
ing” mechanism to reveal when significant inconsistencies arise (new response pat-
terns compared to old response patterns or to old model scores). That issue is addressed
in the next section.

Table 3 shows a sample of the first ten of 127 claims, their transformed treatment
variable values, and their final weighted score. Negative scores would indicate class 1
(potential fraud) claims. Note that in addition to the two-way classification, the claims
can be ranked in a manner similar to ranking by suspicion scores.

Thus, in a totally objective and automated manner, one can decide to investigate claim
3 first, claim 7 next, and pay the rest of the 10 claims (or if resources allow, investigate
files in increasing PRIDIT score order until resources are exhausted). Note that this
evaluation is made on the basis of the data alone, with no need to hire costly adjusters
or investigators to examine all files, score them, and rank-order them.17 Significant
economic savings as well as internal consistency can be so achieved. As an adjunct to

fact, the turnover rate of adjusters and investigators (whose subjective opinions are depen-
dent upon training and economic conditions other uncontrollable variables) means that when
a model such as regression is trained using the subjective opinions of a particular evaluator,
the change of this evaluator may make the parametric “trained” model no longer applicable
to a newly hired evaluator. PRIDIT analysis does not have this weakness and can even be
used for continuous monitoring to determine when significant changes in the underlying
claim variable weights or RIDIT scores have occurred, necessitating a recalibration of the
model. The PRIDIT weights can thus be thought of as more reliable.

17 Note, however, that both objective fraud indicators and subjective fraud indicators exist, and
that experienced professionals are still needed to decide how to score certain of the individual
subjective fraud indicator variables, but the level of expertise needed to score the individ-
ual variables is less. Moreover, psychological literature has established that raters are more
reliable for rating particular attributes or specific components of an overall multiattribute
problem than they are for performing the overall problem, so there is still a gain to be gotten
here.
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TABLE 3
PRIDIT Transformed Indicators, Scores, and Classes

Claim TRT1 TRT2 TRT3 TRT4 TRT5 TRT6 TRT7 TRT8 TRT9 Score Class

1 0.44 0.12 0.08 0.2 0.31 0.09 0.24 0.11 0.04 0.07 2

2 0.44 0.12 0.08 0.2 −0:69 0.09 0.24 0.11 0.04 0.07 2

3 0.44 −0:88 −0:92 0.2 0.31 −0:91 −0:76 0.11 0.04 −0:25 1

4 −0:56 0.12 0.08 0.2 0.31 0.09 0.24 0.11 0.04 0.04 2

5 −0:56 −0:88 0.08 0.2 0.31 0.09 0.24 0.11 0.04 0.02 2

6 0.44 0.12 0.08 0.2 0.31 0.09 0.24 0.11 0.04 0.07 2

7 −0:56 0.12 0.08 0.2 0.31 0.09 −0:76 −0:89 0.04 −0:10 1

8 0.44 0.12 0.08 −0:8 −0:69 0.09 0.24 0.11 0.04 0.02 2

9 −0:56 −0:88 0.08 0.2 0.31 0.09 0.24 0.11 −0:96 0.05 2

10 −0:56 0.12 0.08 0.2 0.31 0.09 0.24 0.11 0.04 0.04 2

the evaluation by experienced insurance adjusters or investigators, the PRIDIT analy-
sis can be used to create a “first pass” through the data to better focus the investigators’
or adjusters’ attention to certain claim files for analysis and can give quantitative back-
up to their own subjective assessments, helping them do their own jobs better.

CONSISTENCY TEST FOR SUBJECTIVE RANKINGS
The PRIDIT technique provides several relevant output values that can be used to
exogenously test the consistency of subjective rankings, or classification of claims,
with fraud indicator data.18 Some examples are as follows:

1. Subjective scores (ranks) for claims files obtained from investigators or adjusters
can be compared to PRIDIT scores (ranks) by Pearson (Spearman) correlation.

2. Subjective bivariate class membership for claims (fraud/nonfraud) can be com-
pared to PRIDIT classes (negative/positive) by contingency table analysis.

3. Fraud indicator discriminatory power for subjective scores and classes (regression
coefficients) can be compared by correlation to PRIDIT weights to dis-
tinguish internal discrimination (PRIDIT) from external, possibly inconsistent,
discrimination.

4. Exogenously derived relationships (regressions) of fraud indicator patterns to
suspicion scores or classes can be compared to PRIDIT scores, ranks, or classes
by correlation and contingency table analysis to reveal the extent of consistency
in subjective evaluations of indicators and subjective scores, ranks, or classes.

We proceed to illustrate these consistency tests using the Automobile Insurers Bureau
(AIB) fraud indicator data and the overall suspicion scores developed from (1) the

18 These types of consistency checks apply to any other similar data scheme for which PRIDIT
analysis is feasible and a separate, but related, ranking or classification is present (such as
when exogenous classifications exist, as with insurance investigators or adjusters).
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TABLE 4
AIB Fraud Indicator and Suspicion Score Data

Spearman Rank Correlations

Adjuster Investigator Adjuster Investigator
Pearson Score Natural Natural Regression Regression
Correlations PRIDIT Score Score Score Score

PRIDIT 1.00 0.60 0.49 0.78 0.64

Adjuster Natural Score 0.56 1.00 0.52 0.81 0.58

Investigator Natural 0.48 0.51 1.00 0.52 0.75
Score

Adjuster Regression 0.73 0.81 0.49 1.00 0.69
Score

Investigator Regression 0.65 0.54 0.75 0.63 1.00
Score

adjusters’ assessment, (2) the investigators’ assessment, (3) two ten-variable regres-
sions of adjusters’ and investigators’ scores on the fraud indicator data,19 and (4) the
overall PRIDIT weights, scores, and (fraud/nonfraud) classes.20 Table 4 displays the
Pearson score correlations below the diagonal and Spearman rank correlations above
the diagonal.

As supervised learning models with the same data, the Adjuster and Investigator
Natural Integer Scores and Regression Scores are highly correlated, as they should be,
under both measures: 0.81 and 0.75, respectively. In addition, in spite of the PRIDIT
methodology being an unsupervised methodology, the PRIDIT/adjuster regression
scores also appear as highly consistent, 0.73–0.78, since the same coders provide both
subjective fraud indicator assessments and overall suspicion levels and both regres-
sion and PRIDIT smooth out inconsistencies. Note that the comparison of the PRIDIT
and Adjuster Natural Integer Scores is much less consistent (0.56–0.65) without the
smoothing effect of the regression procedure.21 Still, this correlation range is very
encouraging given that the PRIDIT method is automated and does not use the accu-
mulated wisdom, gained from experience, of trained claims adjusters. However, in
reality PRIDIT does use the experience of the insurance professionals in constructing
the appropriate indicator variables, and this is the source of its strength.

Meanwhile, the PRIDIT/investigator scores are somewhat less consistent (0.65–0.64,
comparing regression scores or 0.48–0.49, comparing natural scores). The comparison
of adjuster and investigator regression score ranking consistency (0.69) is quite simi-
lar to the PRIDIT/investigator regression ranking comparison (0.64). Note also that
the correlation exhibited between PRIDIT scores and adjusters’ scores are of the same
magnitude as the correlation between the investigators’ and the adjusters’ scores, but

19 See Weisberg and Derrig, 1998, Tables 3 and 5.
20 The PRIDIT weights are shown in Appendix B. An Excel Workbook is available from the

authors containing the data and calculations for these comparisons.
21 The use of natural integer scoring produces lumpy rankings with many ties by virtue of the

discretized zero-to-ten scores.
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TABLE 5
AIB Fraud Indicator and Suspicion Score Data Consistency

Spearman Rank Correlations

Adjuster Investigator Adjuster Investigator
Pearson Score Natural Natural Regression Regression
Correlations PRIDIT Score Score Score Score

PRIDIT FULLC MODC LOWC FULLC MODC

Adjuster Natural Score MODC FULLC MODC FULLC MODC

Investigator Natural LOWC MODC FULLC MODC FULLC
Score

Adjuster Regression MODC FULLC LOWC FULLC MODC
Score

Investigator Regression MODC MODC FULLC MODC FULLC
Score

without the same level of labor costs. Given the lower level of correlation between
the adjusters’ and investigators’ natural scores (0.56–0.60), this correlation reflects the
intrinsic difficulty of identifying fraud, even for trained and experienced profession-
als. In this light, PRIDIT does well.

In the spirit of the fraud suspicion categories (none, low, moderate, high) used in
the Weisberg and Derrig studies (1991–1998), we adopt a four-category consistency
scale of (absolute) quartile correlation values: no consistency (0–0.24), low consistency
(0.25–0.49), moderate consistency (0.50–0.74), and full consistency (0.75–1.00). With
these conventions, Table 4 is transformed into Table 5, showing consistency levels. We
leave what “adequate” consistency is to the reader’s judgment.22

Table 6 displays the four 2-way tables comparing fraud/nonfraud classes derived by
the negative/positive assignment using PRIDIT weights, with fraud/nonfraud classes
defined by splitting the ten-point adjuster or investigator claim file suspiciousness
score into two levels at the score 4. Highly (7–10) and moderately (4–6) suspicious
claims define the fraud class, while the no-suspicion (zero) and low-suspicion (1–3)
claims define the nonfraud class. Consistency is measured here by the cross-product,
or odds ratio, ˛ ( Bishop et al., 1977; Rudas, 1998).23 A large ratio indicates consis-
tency (dependence), while zero indicates no consistency (independence). Confidence
intervals for˛ at the 95 percent level are also shown (Upton, 1978). In all cases the cross-
product ratio is significant at the level 0.05 (that is, the confidence interval excludes
the value ˛ = 1).

The weights Ŵ
(∞)

that emerge from the PRIDIT procedure determine the relative
importance of each indicator in determining the internally consistent PRIDIT classes.

22 We suggest correlations of 0.50 and above (moderate to full consistency).
23 The cross-product, or odds ratio, for a 2 × 2 table of counts or probabilities (mij) equals
m11m22=m12m21, assuming all cells are nonzero. Several additional statistics measuring simi-
larity, such as Yule’s Q, chi-squared, and Guttman’s Lamda could also be considered (Upton,
1978).



FRAUD CLASSIFICATION USING PRINCIPAL COMPONENT ANALYSIS OF RIDITS 357

TABLE 6
AIB Fraud Indicator and Suspicious Scores Classes

Fraud/Nonfraud Classifications

PRIDIT Fraud Nonfraud All

Adjuster Natural Score Fraud 33 13 46

Nonfraud 29 52 81

All 62 65 127

(˛ = 4:6)[2:1;10:0]

Adjuster Regression Score Fraud 30 5 35

Nonfraud 32 60 92

All 62 65 127

(˛ = 11:3)[4:0;31:8]

Investigator Natural Score Fraud 46 19 65

Nonfraud 16 46 62

All 62 65 127

(˛ = 7:0)[3:2;15:2]

Investigator Regression Score Fraud 49 19 68

Nonfraud 13 46 59

All 62 65 127

(˛ = 9:1)[4:1;20:6]

TABLE 7
AIB Fraud and Suspicion Score Data—Top Ten Fraud Indicators by Weight

PRIDIT Adjuster Regression Score Investigator Regression Score

ACC3 ACC1 ACC11

ACC4 ACC9 CLT4

ACC15 ACC10 CLT7

CLT11 ACC19 CLT11

INJ1 CLT11 INJ1

INJ2 INS6 INJ3

INJ5 INJ2 INJ8

INJ6 INJ9 INJ11

INS8 TRT1 TRT1

TRT1 LW6 TRT9

Similarly, the regression coefficients provide higher weights for the most important
indicators, given the related overall suspicion score. Table 7 shows the top ten fraud
indicators from the three models: PRIDIT, Adjuster Regression, and Investigator
Regression, when all 65 indicators are considered.

While only two indicators (CLT11 and TRT1) appear in the top ten of both the adjus-
ter and investigator models, four out of the ten indicators picked by PRIDIT are also
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considered in the top ten by either the adjusters or the investigators (PRIDIT analysis
shares these same two indicators in common with adjusters and investigators but has
one additional indicator in common with each). In addition, the dispersion across indi-
cator categories highlights both the importance of the multiple categories of indicators
and the multicollinearity of the indicators. Moreover, note that the derivation of the
regression weights for the Adjusters’ Regression Model required hiring and paying
senior claims managers (adjusters) to go through each of the 127 claim files to secure
an overall claim file suspicion judgment, while PRIDIT did not use this accumulated
wisdom (and expense). A similar comment applies to the Insurance Investigators’
Regression Model.

In addition, while adjusters and investigators both find about 10 percent fraud in their
work, they focus on a different 10 percent, with only a small overlap. This is because
adjusters are looking for variables that assist in adjusting claims (reducing payments),
while investigators are more focused on variables that indicate legal determinants of
fraud. That is, they have different perspectives. The PRIDIT method uses it all.

CONSISTENCY TESTS FOR TIME VARIATION
It is important for any fraud detection system to recognize when significant changes
occur over time. The groups to be detected can change as a result of the deterrent
value of prior detection efforts. The indicator patterns may change due to the use of
more or less highly trained claim adjusters. Unless the relationship of the indicator
patterns and suspicion scores, however determined, is stationary (unchanging with
time), scoring models estimated with prior data may suffer deteriorating accuracy.
Again, this is another reason why we cannot use the standard “test group” method-
ologies. Fraud behavior is constantly evolving as perpetrators learn and adjust. The
PRIDIT methodology supports a testing procedure to evaluate changes over time.

As an example, suppose regression scoring models were in use at the time the auto
injury data above were collected. The consistency tests above could be used to test
whether the new adjuster regression models are consistent with the old models and
with the new indicator data. Old PRIDIT fraud/nonfraud claims could be compared
to new PRIDIT claims as well. Table 8 shows an “update” to Table 4 that tests the rela-
tionship of two “old” models, ten- and 20-variable regression models,24 to the current
adjusters’ raw data and suspicion score regression model.

Note that consistency between the two “old” regression models built on the same data
is extremely high (0.96–0.97). The consistency between the old model ranks and either
new model rank is quite high (0.79–0.81), about the same consistency level relating
the natural score ranks to the (old) regression ranks (0.81). The PRIDIT/regression
rank comparison does deteriorate (0.78–0.69), but less so when compared to the more
complex 20-variable regression model ranks (0.78–0.73). Moreover, the level of corre-
lation (0.69–0.73) remains fairly constant over time, which, since the PRIDIT method
can be automated and is thus less expensive, is encouraging concerning the use of the
unsupervised learning PRIDIT methodology.

24 The models were estimated on nearly identical fraud indicators applied to data four accident
years removed (1989 versus 1993) from the 127 claim data. For this illustration, the regression
models derived using the 1993 data are treated as the old models.
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TABLE 8
AIB Fraud Indicator and Suspicion Score Data

Spearman Rank Correlations

Adjuster Adjuster 10-Variable 20-Variable
Pearson Score Natural Regression Regression Regression
Correlations PRIDIT Score Score Score Score

PRIDIT 1.00 0.60 0.78 0.69 0.73

AdjusterNatural Score 0.56 1.00 0.81 0.63 0.64

Adjuster Regression 0.73 0.81 1.00 0.81 0.79
Score

10-Variable Regression 0.67 0.57 0.70 1.00 0.96
Score

20-Variable Regression 0.72 0.59 0.75 0.97 1.00
Score

TABLE 9
AIB Fraud Indicator and Suspicion Score Data Consistency

Spearman Rank Correlations

Adjuster Adjuster 10-Variable 20-Variable
Pearson Score Natural Regression Regression Regression
Correlations PRIDIT Score Score Score Score

PRIDIT FULLC MODC FULLC MODC MODC

Adjuster Natural Score MODC FULLC FULLC MODC MODC

Adjuster Regression MODC FULLC FULLC FULLC FULLC
Score

10-Variable Regression MODC MODC MODC FULLC FULLC
Score

20-Variable Regression MODC MODC FULLC FULLC FULLC
Score

Table 9 shows the levels of consistency according to our categorized criteria in Table 5.
The criteria indicate the need to “update” may be worthwhile, but the gain is marginal
at best. Similarly, the comparison between PRIDIT fraud/nonfraud classes and “old”
and “new” classes can be formalized. Table 10 provides an update to Table 6.

These data show substantial deterioration (odds ratios change of 5.5/11.3) in the align-
ment between the indicator patterns (PRIDIT) and the ten-variable regression rela-
tionship. The comparison with a more complex 20-variable regression shows a more
consistent (9.2/5.5) result. Neither change represents a (95%) significant change.25 A
similar comparison between the old and new PRIDIT scores would reveal indicator

25 In practice, sample sizes would be chosen to be much larger than the 127-claim example
shown here. Since the variation in the cross-product is a function of the sum of the recipro-
cals, 95 percent intervals for practical settings would be much smaller than shown here.
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TABLE 10
AIB Fraud Indicator and Suspicious Score Classes

Fraud/Nonfraud Classifications

PRIDIT Fraud Nonfraud All

Adjuster Natural Score Fraud 33 13 46

Nonfraud 29 52 81

All 62 65 127

(˛ = 4:6)[2:1;10:0]

Adjuster Regression Score Fraud 30 5 35

Nonfraud 32 60 92

All 62 65 127

(˛ = 11:3)[4:0;31:8]

10-Variable Regression Score Fraud 27 8 35

Nonfraud 35 57 92

All 62 65 127

(˛ = 5:5)[2:2;13:4]

20-Variable Regression Score Fraud 35 8 43

Nonfraud 27 57 84

All 62 65 127

(˛ = 9:2)[3:8;22:6]

pattern changes. Again, the observer or decision maker must determine whether the
detected changes warrant changing a fraud detector process in place.

CONCLUSION
We view the insurance fraud detection problem as a data gathering and data analysis
problem. Claim adjusters and investigators gather different types of information
(data) during the settlement of a claim. Historically, some characteristics or features of
the claim have been labeled as fraud indicators. While traditional fraud indicators are
binary-valued (true or false), other response items may naturally have a small number
of categories (age group) or have a large number of potential responses (dollar size of
loss) that can be segregated into a small number of bins.26

This article introduces the principal component analysis of RIDITs technique (PRIDIT)
for use when the fraud indicators are ordered categorical variables. Our approach
makes use of the matrix structure of the indicator responses and their correlations.
The approach provides (1) scoring weights for the indicators that allow both an
assessment of individual variable “worth” on a [−1;1] scale and a weighted summa-
tive suspicion score, (2) a partition of the sample of claim files examined into positive
(nonfraud) and negative (fraud) consistent with the pattern of indicator responses,
and (3) a ranking by overall score of the individual claim files that can be used to

26 Many fraud indicators contain linguistic variables (old, low-valued car) that may be more
accurately reported as fuzzy numbers, but that is beyond the scope of this article.
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test consistency with scoring methods developed on other (prior) data sets or with
the PRIDIT patterns of older response data. Estimation of the weights is shown to be
equivalent to the first principal component of an n × n matrix where n is the number of
fraud indicators. An advantage of this method over hiring fraud examiners or claims
adjusters to individually examine and classify each individual claim file is that the
PRIDIT procedure exposed is automated and hence more economical (due to labor
costs) while being consistent with the labor-intensive manual examination method.

All the methods introduced here are illustrated in detail using a data set of automo-
bile injury claims occurring in Massachusetts. Explicit correlation and contingency
table criteria are explored to characterize consistency among response data sets and
between responses and scoring models. Additional consistency measures could be
formulated by analogy to sensitivity and specificity characteristics of 2 × 2 classifica-
tion tables. Receiver operating characteristic (ROC) plots can be used to quantify the
sensitivity/specificity tradeoff (Weisberg and Derrig, 1998). Finally, the natural setting
of fraud indicators as linguistic variables may offer the opportunity to apply the many
fuzzy set theoretic data analysis models, such as k -means fuzzy clusters or neural net-
work methods such as self-organizing feature maps.27 Further analyses using these
methods are possible as well. For example, certain indicators arise (nonsubjectively)
at the time of the accident or shortly thereafter, while others follow from investigative
analysis later on. A useful sequel to this article is to use PRIDIT techniques on the
early-arriving indicators to determine whether to proceed forward to collect the full
range of indicators. In addition, PRIDIT scores can be correlated with (or built into
a model to predict) subsequent outcome variables such as dollars saved on claims,
likelihood of successful prosecution, and so on.

APPENDIX A
Discussion and Development of a Measure of Variable Discriminatory Power
Before discussion of the discriminatory power of our methodology, we begin with
some background. Even without assuming any specific probabilistic structure for the
fraud/nonfraud groups, some very interesting consequences of this scoring system are
worth noting. First, the RIDIT score for the categorical response value (Bti) is linearly
related to the RIDIT scoring method introduced by Bross (1958), now commonly used
in epidemiology (see Bertrand et al., 1980; Bross, 1960; Brown et al., 1975; Forthofer
and Koch, 1973; Kantor et al., 1968; Selvin, 1977; Williams and Grizzle, 1972; Wynder
et al., 1960). In fact, if Rti is Bross’s original RIDIT score for category i on variable t,
then Bti = 2Rti − 1. Thus, heuristic justifications given by several authors for the use
of RIDIT scoring (for example, Bross, 1958; Selvin, 1977) carry over directly to our sit-
uation, as well as the theoretical and empirical attributes described by Brockett (1981)
and Golden and Brockett (1987).

The relationship between relative ranks, Wilcoxon test statistics, and RIDIT scores
also carries over directly (see Selvin, 1977). In particular, one can show, assuming two
groups, such as fraud and nonfraud, that the average RIDIT score, B̄(1)

t , for a fraud
group member on variable t is 2W∗

1 =N1 − 2, where W∗
1 is the Wilcoxon rank sum

27 Derrig and Ostaszewski (1995) and Brockett et al. (1998) provide examples of these
approaches. Zimmerman (1999) provides a large collection of methods and applications.
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statistic for comparing the fraud group against the nonfraud group responses to vari-
able t (see Beder and Heim, 1990; Selvin, 1977).

Accordingly, our RIDIT scoring method yields a measure of “variable discriminatory
power,” assuming the group members are known (the supervised learning context).
In fact, this scoring method and related rank scoring methods often do better than
natural integer scoring for linear discriminant analysis of non-normal data (see Broffit
et al., 1976; Conover and Iman, 1978; Golden and Brockett, 1987; Randles et al., 1978).28

We emphasize, however, that in the automobile bodily injury fraud detection situa-
tion considered herein, we do not know group membership and hence Wilcoxon is not
applicable (although PRIDIT analysis as introduced in this article is). Still, the intuitive
appeal of the connection and the correspondence with known statistical methodol-
ogies under the additional assumptions of known group membership give greater
confidence in the results in the situation of this article where group membership is
unknown.

We now proceed to the problem of determining variable discriminatory power and
discrimination between two groups when we do not know the criterion variable (that
is, when the sample is “unclassified” with respect to group characteristic of likelihood
of fraud versus nonfraud). Assume that N claim files are available containing ordinal
valued categorical variables. Two groups are represented (the fraudulent claims and
the nonfraudulent claims); however, we have no knowledge a priori concerning which
individual claims belong to which group.

First, assume (valid on our application because of the construction and selection of
fraud indicator variables) that the individual variables are constructed in such a man-
ner that a univariate stochastic dominance relationship exists between the two groups
on each variable (fraudulent claims tend to fall into lower categorical classifications
than the nonfraudulent claims). Also assume that a single overall dimension exists on
which a combination of the individual variables discriminates (this dimension may
be called the fraud suspiciousness dimension). One can justify this assumption
because of the way the variables were constructed using the expertise of the insurance
fraud professionals.29 A quick examination of the fraud indicator variables listed in

28 Accordingly, if one is forced to use standard statistical methods, we would advocate using
RIDIT scoring as a precursor to applying the statistical method in the situation wherein one
encounters rank-ordered categorical but not interval-level data in a supervised learning con-
text (that is, actual training samples are available from the fraud and nonfraud groups). One
could, for example, extend regression or probit or logit analysis as has been used previously
for fraud detection modeling to the situation wherein rank-ordered non-interval categorical
fraud variables are used (see Golden and Brockett, 1987).

29 There has been a long history of using these variables by experienced claims adjusters and
investigators. Moreover, in those situations in which one has a categorical but non-ordinal
variable, one can often rearrange the variable categories in such a way that the newly rear-
ranged variable satisfies the stochastic dominance assumption. This can be done as follows:
First run the PRIDIT analysis without this variable and then rank-order the resulting claim
files in accordance with overall score. Then take the upper and lower quartiles of the ordered
files and calculate a probability for each categorical response for each quartile. Finally, rear-
range the categories in such a manner than the stochastic dominance relation holds. Since
order means nothing in non-ordinal categorical data, this transforms the variable in a manner
appropriate for the assumptions of the model to be valid.
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Appendix B shows that these variables do indeed satisfy the above assumption for
the bodily injury fraud detection problem under consideration in this article.

We shall call the group with a higher propensity to respond toward the lower end of
the set of categorical classifications for a particular fraud indicator variable the fraud
group and label it as group 1, while we call the group with a higher propensity to
respond toward the upper end of the set of categorical classifications the nonfraud
group, or group 2 (although precisely which claim belongs to which group is not
assumed to be known at the onset of the analysis). The vector of observed response
proportions for the kt categories of variable t using all N claim files, pt, may be modeled
as a sample from a mixture from these two groups:

pt = θ�(1)
t + (1 − θ)�(2)

t ; (A1)

where for q = 1 and 2, �(q)
t = (�(q)

t1 ; : : : ;�
(q)
tkt ) is the multinomial response probability

vector for group q. Here �(1)
tj is the proportion of the fraud, or group 1, claims that fall

into category j on fraud indicator variable t; �(2)
tj is the proportion of the nonfraud, or

group 2, claims that fall into category j on fraud indicator variable t; and � = N1=N
is the proportion of claims that belong to the fraud group. We will prove that the ex-
pected (suspicion) score for a claim file belonging to the nonfraud group is (� − 1)At

and the expected score for a fraud group claim file is �At, where

At =
kt−1∑
i=1

∑
j>i

{
�(1)
ti �

(2)
tj − �(2)

ti �
(1)
tj

}
(A2)

is a measure of the individual fraud indicator variable t’s discriminatory ability. Of
course, in many applications (including those in this article), N1;�;�

(1)
t and �(2)

t are
all unknowns, so we shall have to find an alternative way to estimate At. We shall
subsequently show that the first principal component of the matrix constructed from
the respondents’ RIDIT scores can be used to estimate At and hence complete the
analysis.

Although �(1)
t ; �(2)

t and N1 are unknown (and hence At and � are not directly comput-
able), the important quantity At deserves further discussion. As mentioned, the value
of At indicates the discriminatory power of fraud indicator variable t in that |At| ≤ 1
with At = 1 if and only if the variable discriminates perfectly between the fraud and
nonfraud groups in the sense that for some category j;

∑j−1
i=1 �(1)

ti = 1 and
∑kt

i=i �
(2)
ti = 1.

If the variable still discriminates perfectly, but in the opposite direction, then At = −1.
If the variable does not discriminate at all in the sense that �(1)

ti = �(2)
ti for i = 1; 2; : : : ;kt,

then At = 0.

Since for each variable, we have a stochastic ordering of the cumulative distribution
function of the two fraud/nonfraud groups (that is, a first-order stochastic dominance
relationship), the size of At indicates ordinal discriminatory power and measures the
expected between-group difference on variable t. Note also that the term inside the
brackets of the summation defining At is the standard cross-product measure of
association for 2 × 2 contingency tables (see Stuart and Ord, 1991). Thus, At is a new
measure of association for a 2 × kt contingency table with ranked response categories
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which generalizes the classical 2 × 2 measure to our situation of general rank-ordered
categorical variables.

When the true classification of each claim (fraud/nonfraud) is unknown, one can-
not calculate directly the contingency table measure At mentioned in the body of the
article. However, the relationship between relative ranks, Wilcoxon test statistics, and
RIDIT scores does provide a connection between our scoring method and a measure of
variable discriminatory worth when group membership is known that is related to At.
Since our method is also available when group membership is unknown, this connec-
tion provides intuition and credibility for the results in the frequent situation wherein
group membership is not known. This connection may be developed as follows: Let
Ytj denote the relative rank position of respondent j on the ranked response categorical
variable t relative to all N claim files containing a categorization for variable t, and let
IA denote the indicator function of the set A. The relative rank of a particular claim’s
score may be represented as

Ytj =
N

2

kt∑
i=1

BtiI [category i given] +
N

2
: (A3)

Now, if Nq claim files originate from group q, q = 1,2, then (using the relationship
between average relative ranks of two groups in a combined sample versus the Wilco-
xon rank sum statistic) the average score for a group 1 claim file on t is B̄(1)

t = 2W∗
1 =N1−2

where W∗
1 is the Wilcoxon rank sum statistic for comparing group 1 and 2 classifica-

tions to t, allowing for ties (see Beder and Heim, 1990; Selvin, 1977).

Accordingly, if we had knowledge of group membership (as occurs, for example,
in discriminant analysis, supervised neural networks, or logistic regression),
then our RIDIT scoring technique, Bti, immediately yields a measure B̄

(1) of “variable
discriminatory power,” namely, the Wilcoxon statistic. This encouraging result
motivates us to continue onward to the more difficult situation wherein group mem-
bership is unknown. To this end, we show how to use results from principal com-
ponent analysis and factor analysis to obtain a consistent estimate of At and, hence,
obtain a measure of an individual variable’s value for discriminating fraudulent
claims.30

An important assumption we make is that we are dealing with a first-order probability
model; that is, if for a particular collection of claims in either the fraud or nonfraud
group, one wishes to know what proportion of files are expected to be simultaneously
classified into category i on variable t and into category j on variable s, one needs only
know the marginal probabilities of category i on variable t and category j on variable
s. This first-order model assumption statistically translates into the property of con-
ditional lack of correlation of variable classifications, given group membership (fraud
or nonfraud). Remember that since we are only assuming attributes of the conditional

30 Note that in PRIDIT analysis, the tasks of determining variable discriminatory ability, scoring
of variables, and obtaining overall fraud suspicion scores are not done separately as in most
other fraud analyses. Rather, our analysis shows that the principal component analysis of
RIDITs technique introduced here provides an inner consistency between these aspects of
fraud suspicion analysis, which is also related to measures of external validity.
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distributions, this assumption of a first-order model does not imply lack of correlation
between variable classifications for the total sample of claim files. Indeed, in practice
there is much dependence among variables (which is why they are useful for fraud
detection). However, it is sufficient that this dependence drops significantly within the
individual subgroups. Note also that this conditional lack of correlation assumption
is also common to latent trait models, where it is called “local independence” (see
Hambleton and Cook, 1977). The latent trait in our analysis is suspiciousness of the
claim.

We turn now to the situation in which the group classifications are unknown. As
before we have pt = ��(1)

t + (1 − �)�(2)
t for fraud group q = 1 and nonfraud group q = 2

where � = N1=N is the proportion of claim files belonging to group 1. The following
lemma relates the theoretical (and unobserved) quantities �;�(1)

t , and �tt
(2) to the pre-

vious scoring system and determines a measure of predictor variable discriminatory
power (At).

Lemma 1: Assume that a claim file produces a score Bti on predictive fraud indicator variable
t. Then the expected score for a claim file in the low suspicion group 1 is (� − 1)At, and the
expected score for a high suspicion group 2 claim file is �At where At is given by (3).

Proof of Lemma 1: Only prove the result for the high fraud suspicion group 1 because
a similar calculation will yield the low or nonfraud suspicion group result. Select a
respondent at random from the fraud group 1 and let Ii = 1 if the ith categorical classi-
fication level was assigned to that claim on that particular variable t. Then the desired
expected value is

kt∑
i=1

�(1)
ti E[Bti|Ii = 1]

=
kt∑
i=1

�(1)
ti

[∑
j<i

(N1 − 1)�(1)
tj + N2�

(2)
tj

N
− ∑

j>i

(N1 − 1)�(1)
tj + N2�

(2)
tj

N

]
: (A4)

Using the identities N1 = N − N2 = N� and
∑kt−1

i=1
∑

j<i xiyj =
∑kt−1

i=1
∑

j>i xjyi, we find
after elementary computation this expected value is

−N2

N

kt−1∑
i=1

∑
j>i

{
�(1)
ti �

(2)
tj − �(2)

ti �
(1)
tj

}
= (� − 1)At: (A5)

Now prove the results of the theorem stated in the text. Let B∗
qt denote the score of

a randomly selected claim file from suspicion level group q on variable t, and let
G = E(F′F).

Lemma 2: Let G = M + U where M = N1N2(AiAj)=N and U is diagonal with Utt =
Nσ2

1t + N2σ
2
2t, where )t

qt = variance (B∗
qt). (Note that G has a factor analytic structure with

Utt being the uniqueness component of the variance for variable t).
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Proof of Lemma 2: We have G = (gst) with

gst = E

[
N∑
i=1

fisfit

]
= E

[
N1∑
i=1

fisfit +
N∑

i=N1+1
fisfit

]
; (A6)

where we arranged the first N1 claim files so that they belong to group 1. Having a
first-order model yields gst = N1E[fisfit|ith claim file in the fraud group 1] +N2E[fisfit|ith
claim file in the nonfraud group 2]. If s �= t, use conditional independence and Lemma

1 to obtain
N1N2AtAs

N
. If s = t, add and subtract

N1N2A
2
t

N
to obtain

gtt =
N1N2A

2
t

N
+

[
N1E(B∗2

2t ) − N1N
2
2A

2
t

N

]
+

[
N2E(B∗2

2t ) − N2N
2
1A

2
t

N

]
: (A7)

It follows that G = M + U as claimed.

Lemma 3: The characteristic polynomial of G = E(F′F) is

f (�) =

{
m∏
t=1

(Utt − �) +
∑ N1N2

N
A2

t

∏
s; t

(Uss − �)

}

=
m∏
t=1

(Utt − �)
{

1 +
∑ N1N2

N
A2

t =(Utt − �)
}

(A8)

The largest eigenvalue �1 of G is positive and larger than max Utt. The second largest eigen-
value is between the two largest values of Utt.

Proof of Lemma 3: The equation for f (�) follows from elementary operations on G
(see Graybill, 1969).

To obtain the location of the eigenvalues of G, consider first the case in which all theUtt

are distinct and arrange them in order U1 < U2 < : : : < Um. From the formula for f (�)
the algebraic sign of f (�) is clearly plus if � ≤ U1 and f (Uk) has the sign (−1)k+1. Since
f (Ut) alternates in sign, f has at least one root between Ut and Ut+1;t = 1; : : : ;m − 1.
We have accounted for (m − 1) of the m eigenvalues, and the remaining eigenvalues
must be larger than Um. If all the Utt are not distinct, say, k of them are equal to Ujj,
then f (�) has a root of multiplicity k at Ujj and again we have accounted for (m − 1)
roots to the left of max Utt.

We now may prove the following.

Theorem 1. The sequences of predictor variable weights {W(n)} and overall summative claim

file suspicion scores {S(n)} converge. Moreover, the limiting predictor variable weight Ŵ
(∞)

is
the first principal component of F′F, which is a consistent estimate of the principal component
W(∞) of E(F′F), the tth component of which is explicitly

W (∞)
t =

At

(�1 − Utt)

√
m∑
s=1

A2
s=(�1 − Uss)2

; (A9)
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where �1 is the largest eigenvalue of E(F′F) and Utt = N1)
2
1t + N2)

2
2t is the “uniqueness

component of variance” in a single-factor analytic model.

Proof of Theorem 1: First show that lim(n) W(n) and lim(n) S(n) exist. Note that W(n) =
W(n)F′S(n−1)=‖F′S(n−1)‖ = (F′F)nW(0)=‖(F′F)nW(0)‖. By elementary linear algebra,
it follows that lim W(n) exists and is the projection of W(0) onto the eigenspace gen-
erated by the largest eigenvalue of F ′F. To calculate the first principal component of
E(F ′F), use Lemma 3 and the matrix E(F′F) − �I. Note that if V1 is the first principal
component, then it must satisfy the equations

V1i =
(�1 − U22)Ai

(�1 − Uii)A2
V12 for i �= 2: (A10)

This together with the fact that f (�i) = 0 implies
m∑

1=1

N1N2A
2
i

(Uii−�1) + 1 = 0 shows that with

W (∞)
t given as in the theorem we have E(F′F)W (∞) = �1W

(∞), proving the theorem.

APPENDIX B
Suspicion of Fraud Indicator Variables From the AIB Data

Weights

By Category Overall

A. Accident Characteristics

ACC1 No report by police officer at scene −0:13 0.33

ACC2 No witnesses to accident 0.22 0.15

ACC3 Rear-end collision 0.42 0.40

ACC4 Single vehicle accident −0:63 −0:43

ACC5 Controlled intersection collision 0.43 0.08

ACC6 Claimant was in parked vehicle −0:02 0.14

ACC7 Two drivers were related or friends −0:21 0.06

ACC8 Late-night accident 0.01 0.01

ACC9 No plausible explanation for accident −0:26 0.02

ACC10 Claimant in an old, low-value vehicle 0.45 0.18

ACC11 Rental vehicle involved in accident −0:18 −0:01

ACC12 No tow from scene despite severely damaged car 0.11 0.20

ACC13 Site investigation raised questions 0.00 0.00

ACC14 Property damage was inconsistent with accident 0.31 0.24

ACC15 Very minor-impact collision 0.54 0.57

ACC16 Claimant vehicle stopped short 0.52 0.11

ACC17 Claimant vehicle made unexpected maneuver 0.38 0.15

ACC18 Insured/claimant versions differ 0.24 0.14

ACC19 Insured felt set up, denied fault 0.43 0.17
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APPENDIX B CONTINUED

Weights

By Category Overall

B. BI Claimant Characteristics

CLT1 Retained an attorney very quickly 0.23 0.16

CLT2 Had a history of previous claims 0.33 0.28

CLT3 Gave address as hotel or P.O. Box 0.00 0.00

CLT4 Was an out-of-state resident −0:22 −0:16

CLT5 Retained a “high-volume” attorney −0:03 0.24
(list obtained from known table)

CLT6 Was difficult to contact/uncooperative 0.69 0.14

CLT7 Was one of three or more claimants in vehicle 0.18 −0:02

CLT8 Was resident of high-claim town 0.38 0.35
(obtained from known list)

CLT9 Avoided use of telephone or mail 0.64 0.15

CLT10 Was unemployed 0.57 0.12

CLT11 Appeared to be “claims-wise” 0.12 0.48

C. BI Insured Driver Characteristics

INS1 Had a history of previous claims 0.74 0.12

INS2 Gave address as hotel or P.O. Box 0.00 0.00

INS3 Readily accepted fault for accident 0.05 0.13

INS4 Was acquainted with other vehicle occupants 0.66 −0:05

INS5 Was not willing to provide a sworn statement 0.00 0.00

INS6 Was difficult to contact/uncooperative 0.37 0.03

INS7 Accident occurred soon after policy effective date 0.31 0.01

INS8 Appeared to be “claims-wise” 0.30 0.43

D. Injury Characteristics

INJ1 Injury consisted of strain/sprain only 0.77 0.72

INJ2 No objective evidence of injury 0.75 0.61

INJ3 Police report showed no injury or pain 0.51 0.18

INJ4 Claimant refused to appear for an independent 0.10 0.16
medical examination

INJ5 No emergency treatment was given for the injury 0.70 0.42

INJ6 Non-emergency treatment was delayed 0.53 0.42

INJ7 First non-emergency treatment was by a chiropractor 0.17 0.35

INJ8 Activity check cast doubt on injury −0:07 −0:10

INJ9 Injuries were inconsistent with police report 0.36 0.07

INJ10 Independent medical examination suggests injury was 0.29 0.02
unrelated to accident
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APPENDIX B CONTINUED

Weights

By Category Overall

INJ11 Unusual injury for this auto accident 0.14 0.10

INJ12 Evidence of an alternative cause of injury 0.02 0.26

E. Treatment Characteristics

TRT1 Large number of visits to a chiropractor 0.3 0.65

TRT2 Chiropractor provided 3 or more modalities on most visits 0.19 0.37

TRT3 Large number of visits to a physical therapist 0.53 0.13

TRT4 MRI or CT scan but no inpatient hospital charges 0.38 0.05

TRT5 Use of “high-volume” medical provider (from a known list) 0.02 0.36

TRT6 Significant gaps in course of treatment 0.70 0.17

TRT7 Treatment was unusually prolonged (more than 6 months) 0.82 0.18

TRT8 Independent medical examiner questioned extent of treatment 0.37 0.18

TRT9 Medical audit raised questions about charges −0:13 0.28

F. Lost Wage Characteristics

LW1 Claimant worked for self or family member −0:11 −0:05

LW2 Employer wage differs from claimed wage loss 0.48 −0:01

LW3 Claimant recently started employment 0.90 −0:18

LW4 Employer unknown/hard to reach 0.00 0.00

LW5 Lost wages statement looked unofficial 0.77 −0:13

LW6 Long disability for a minor injury 0.25 0.08
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