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Abstract

We survey recent developments in the economic analysis of insurance fraud. The paper
first sets out the two main approaches to insurance fraud that have been developed in
the literature, namely the costly state verification and the costly state falsification.
Under costly state verification, the insurer can verify claims at some cost. Claims’
verification may be deterministic or random. Under costly state falsification, the pol-
icyholder expends resources for the building-up of his or her claim not to be detected.
We also consider the effects of adverse selection, in a context where insurers cannot
distinguish honest policyholders from potential defrauders, as well as the conse-
quences of credibility constraints on anti-fraud policies. Finally, we focus attention
on the risk of collusion between policyholders and agents in charge of marketing
insurance contracts.
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10.1 INTRODUCTION

Insurance fraud is a many-sided phenomenon.' Firstly, there are many different
degrees of severity in insurance fraud, going from build-up to the planned criminal
fraud, through opportunistic fraud. Furthermore, insurance fraud refers primarily to
the fact that policyholders may misreport the magnitude of their losses’ or report an

* I am particularly grateful to two referees for their detailed comments on a previous version of this
chapter.

! See the chapter by Georges Dionne in this book on empirical evidence about insurance fraud.

? Note that a claimant is not fraudulent if he relics in good faith on an erroneous valuation of an appar-
ently competent third party—see Clarke (1997)—. However, insurance may affect frand in markets for cre-
dence goods, i.e., markets where producers may provide unnecessary services to consumers who are never
sure about the extent of the services they actually need. See Darby and Karni (1973) on the definition of
credence goods and Dionne (1984) on the effects of insurance on the possibilities of fraud in markets for
credence goods.
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accident that never occured, but there is also fraud when a policyholder does not dis-
close relevant information when he takes out his policy or when he deliberatly creates
further damages to inflate the size of claim. Lastly, insurance fraud may result from
autonomous decision-making of opportunist individuals, but often it goes through col-
lusion with a third party.

Since Becker (1968) and Stigler (1970), the analysis of fraudulent behaviors is
part and parcel of economic analysis and there is a growing theoretical literature
dealing with insurance fraud. Making progress in this field is all the more important
that combating insurance fraud is nowadays a major concern of most insurance
companies.

This survey of recent developments in the economic theory of insurance fraud is
organized as follows. Sections 10.2-10.4 set out the two main approaches to insur-
ance fraud that have been developed in the literature: the costly state verification and
the costly state falsification. Both approaches should be considered as complemen-
tary. Under the costly state verification hypothesis, the insurer can verify damages but
he then incurs a verification (or audit) cost. Under costly state falsification, the poli-
cyholder expends some resources for the building-up of his or her claim not to be
detected by the insurer. In Section 10.2, we first describe the general framework used
in most parts of our study, namely a model in which a policyholder has private infor-
mation about the magnitude of his losses and who may file fraudulent claims. We then
turn to the analysis of costly state verification procedures under deterministic audit-
ing. In practice, claim handlers are, to some extent, entrusted with claims verification
but, more often than not, state verification involves some degree of delegation. Indeed,
there are specific agents, such as experts, consulting physicians, investigators or attor-
neys who are in charge of monitoring claims. Under deterministic auditing, claims
are either verified with certainty or not verified at all, according to the size of the
claim. Recent developments in the economic theory of insurance fraud surveyed in
sections 10.3 and 10.4 emphasize the fact that policyholders may engage in costly
claims falsification activities, possibly by colluding with a third party such as an auto
mechanic, a physician or an attorney. Section 10.3 remains within the costly state ver-
ification approach. It is devoted to the analysis of audit cost manipulation: policy-
holders may expend resources to make the verification of damages more difficult.
Section 10.4 addresses the (stricto sensu) costly state falsification approach: at some
cost, policyholders are supposed to be able to falsify the actual magnitude of their
losses. In other words, they can take acts that misrepresent the actual losses and then
the claims’ build up cannot be detected. Sections 10.5 to 10.7 set out extensions of
the costly state verification model in various directions. Section 10.5 focuses on
random auditing. Section 10.6 characterizes the equilibrium of a competitive insur-
ance market where trades are affected by adverse selection because insurers cannot
distinguish honest policyholders from potential defrauders. Section 10.7 focuses on
credibility constraints that affect antifraud policies. Section 10.8 focuses on collusion
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between policyholders and agents in charge of marketing insurance contract. Section
10.9 concludes. Proofs and references for proofs are gathered in an appendix.

10.2 COSTLY STATE VERIFICATION: THE CASE OF
DETERMINISTIC AUDITING

Identical insurance buyers own an initial wealth W and they face an uncertain mone-
tary loss x, where x is a random variable with a support [0, X¥] and a cumulative dis-
tribution F(x). The no-loss outcome—i.e., the “no-accident” event—may be reached
with positive probability. Hence x is distributed according to a mixture of discrete and
continuous distributions: x has a mass of probability f(0) at x = 0 and there is a con-
tinuous probability density function f(x) = F’(x) over (0, x]. In other words f(x)/[1 -
f(0)] is the density of damages conditional on a loss occurring.

The insurance policy specifies the (non negative) payment #(x) from the insurer
to the policyholder if the loss is x and the premium P paid by the policyholder. The
realization of x is known only to the policyholder unless there is verification, which
costs ¢ to the insurer.

For the time being, we assume that the insurer has no information at all about the
loss suffered by the policyholder unless he verifies the claim through an audit, in
which case he observes the loss perfectly.” We will later on consider alternative
assumptions, namely the case where the insurer has partial information about the
loss suffered (he can costlessly observe whether an accident has occurred but not the
magnitude of the loss) and the case where the claim is a falsified image of true
damages.

The policyholder’s final wealth is W, = W — P — x + #(x). Policyholders are
risk-averse. They maximize the expected utility of final wealth EU(W)), where U(")
is a twice differentiable von Neumann-Morgenstern utility function, with U’ > 0,
U” <0.

A deterministic auditing policy specifies whether a claim is verified or not
depending on the magnitude of damages. More precisely, following Townsend (1979),
we define a deterministic audit policy as a verification set M c [0, x], with comple-
ment M, that specifies when there is to be verification. A policyholder who experi-
ences a loss x may choose to file a claim x. If x € M, the claim is audited, the loss x
is observed and the payment is #(x). If x € M*, the claim is not audited and the payment
to the policyholder is #(x).

A contract & = {#(*), M, P} is said to be incentive compatible if the policyholder
thruthfully reveals the actual loss, i.e., if x = x is an optimal strategy for the policy-

* On insurance fraud with imperfect auditing, see Abadie (1999). On imperfect auditing, in contexts
which are different from insurance fraud, see Baron and Besanko (1984) and Puelz and Snow (1995).
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holder. Lemma 1 establishes that any contract is weakly dominated* by an incentive
compatible contract, in which the payment is constant in the no-verification set M¢
and always larger in the verification set than in the no-verification set.

Lemma 1. Any contract 8 = {#), M, P} is weakly dominated by an incentive com-
patible contract & = {#(-), M, P} such that:

i(x)=t, for x e M*

(x)>t, for xeM

where £, is some constant.

The characterization of the incentive compatible contracts described in Lemma 1
is quite intuitive. In the first place, truthful revelation of the actual loss is obtained by
paying a constant indemnity in the no-verification set, for otherwise the policyholder
would always report the loss corresponding to the highest payment in this region.
Secondly, if the payment were lower for some level of loss located in the verification
set than in the no-verification set, then, for this level of loss, the policyholder would
announce falsely that his loss is in the no-verification set.’

Lemma 1 implies that we may restrict our characterization of optimal contracts
to such incentive compatible contracts. This is proved by defining #(x) as the highest
indemnity payment that the policyholder can obtain when his loss is x, by choosing
M as the subset of [0, x] where the indemnity is larger than the mlmmum and
by letting P = P. This is illustrated in Figure 1, with M = (x*, ¥], M = (x**, x],
£(x) = to if x < x** and £(x) = #(x) if x > x**. Under §, for any optimal reporting strat-
egy the policyholder receives ¢, when x < x** and he receives #(x) when x > x**, which
corresponds to the same payment as under 8.F urthermore, under J, any optimal strat-
egy X(x) is such that x(x) € M if x > x**, which implies that verification is at least
as frequent under & (for any optimal reporting strategy) as when the policyholder tells
the truth under . Thus, & and 6 lead to identical indemnity payments whatever the
true level of the loss and expected audit costs are lower when there is truthtelling
under & than under .

From now on, we restrict ourselves to such incentive compatible contracts. The
optimal contract maximizes the policyholder’s expected utility

EU=[ UW —P-x+16)dF(x)+[ UW =P -x +1,)dF (x) (1)

* Dominance is in a Pareto-sense with respect to the expected-utility of the policyholder and to the
expected profit of the insurer.

5 If both payments were equal, then it would be welfare improving not to audit the corresponding level
of loss in the verification region and simultaneously to decrease the premium. Note that Lemma | could
be presented as a consequence of the Revelation Principle (see footnote 21).
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t(x)

0 — X

Figure 1

with respect to P, o, #(-): M — R, and M c [0, X], subject to a constraint that requires
the expected profit of the insurer ETI to meet some minimum preassigned level nor-
malized at zero

ETMl=P-{ [(0)+cldF(x0)+ [ tdF(x)20 2)
aﬁd to the incentive compatibility constraint |

t(x)>t, forall x in M 3)
Lemma 2. For any optimal contract, we have

t(x)=x—k>t,forallxin M
and

M =(m, x]with m €[0, x]

Lemma 2 shows that it is optimal to verify the claims that exceed a threshold m
and also to provide full insurance of marginal losses when x > m. The intuition of
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these results are as follows. The optimal policy shares the risk between the insured
and the insurer without inducing the policyholder to misrepresent his loss level. As
shown in Lemma 1, this incentive compatibility constraint implies that optimally
the indemnity schedule should be minimal and flat outside the verification set, which
means that no insurance of marginal losses is provided in this region. On the contrary,
nothing prevents the insurer to provide a larger variable coverage when the loss level
belongs to the verification set. Given the concavity of the policyholder’s utility func-
tion, it is optimal to offer the flat minimal coverage when losses are low and to provide
a larger coverage when losses are high. This leads us to define the threshold m that
separates the verification set and its complement. Furthermore, conditionally on the
claim being verified, i.e., when x > m, sharing the risk optimally implies that full cov-
erage of marginal losses should be provided.
Hence, the optimal contract maximizes

EU = jo"' UW —x - P+1,)dF(x)+[l = Fm)JUW - P k)
with respect to P, m 2 0, t, 2 0 and & = t, — m subject to
ETl=P-t,F(m)-[ (c+x—kMdF(x)20

At this stage it is useful to observe that £U and ETI are unchanged if there is a
variation in the coverage, constant among states, compensated by an equivalent vari-
ation in the premium, i.e., dEU = dETI = 0 if dty, = dk = dP, with m unchanged. Hence,
the optimal coverage schedule is defined up to an additive constant. Without loss of
generality, we may assume that no insurance payment is made outside the verification
set, i.e., #p = 0. We should then have #(x) = x — k > 0 if x > m, or equivalently m — k
2 0. In such a case, the policyholder files a claim only if the loss level exceeds the
threshold m. This threshold may be viewed as a deductible.

Note that the optimal coverage is no more indeterminate if we assume, more real-
istically, that the cost c is the sum of the audit cost and of an administrative cost which
is incurred whenever a claim is filed, be it verified or not. In such a case, choosing
fo = 0 1n the no-verification set is the only optimal solution since it saves the admin-
istration cost—see Picard (1999).

The optimal contract is derived by maximizing

EU=IOMU(W—x—P)dF(x)+[1—F(m)]U(W—P—k) (4)
with respect to m > 0, k and P, subject to
EH=Pej} (c+x+k)dF(x)=0 (5)

m-k>0 (6)
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Proposition 1. Under deterministic auditing, an optimal insurance contract § = {#(*),
M, P} satisfies the following conditions:

M=(m, x] with m>0
tx)=0 if x<m
tx)=x-k if x>m

with 0 < k< m.

The optimal contract characterized in proposition 1—(established by Gollier
(1987)—is depicted in Figure 2. First, it states that it is optimal to choose a positive
threshold m. The intuition is as follows. When m = 0, all positive claims are verified
and it is optimal to offer full coverage, i.e., #x) = x for all x > 0. Starting from
such a full insurance contract an increase dm > 0 entails no first-order risk-sharing
effect. However, this increase in the threshold cuts down the expected audit cost, which
is beneficial to the policyholder. In other words, in the neighbourhood of m = 0 the
trade-off between cost minimization and risk-sharing always tips in favor of the first
objective.

Secondly, we have 0 < k < m which means that partial coverage is provided when
x> m. Intuitively, the coverage schedule is chosen so as to equalize the marginal utility

A

- 45°

; p X
0 m’ m

Figure 2 Optimal insurance coverage under deterministic auditing
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of final wealth in each state of the verification set with the expected marginal utility
of final wealth, because any increase in the insurance payment has to be compensated
by an increase in the premium paid whatever the level of the loss. We know that no
claim is filed when x < m, which implies that the expected marginal utility of final
wealth is larger than the marginal utility in the no-loss state. Concavity of the poli-
cyholder’s utility function then implies that a partial coverage is optimal when the
threshold is crossed.

Thus far we have assumed that the insurer has no information at all about the loss
incurred by the policyholder. In particular, the insurer could not observe whether a
loss occured (x > 0) or not (x = 0). Following Bond and Crocker (1997), we may alter-
nately assume that the fact that the policyholder has suffered some loss is publicly
observable. The size of the loss remains private information to the policyholder: ver-
ifying the magnitude of the loss costs ¢ to the insurer. ‘

This apparently innocuous change in the information structure strongly modlﬁes
the shape of the optimal coverage schedule. The insurer now pays a specific transfer
t = t, when x = 0, which occurs with probability f(0). Lemmas 1 and 2 are unchanged
and we now have

EU = fOUW -,P+t1)+j0'" UMW —x - P+1,)dF(x)+[1 - Fm)JUW - P—k)

ETl=P=t,f©)~t[F(m)- fO)- [ (c+x-k)dF ()

The optimal contract maximizes EU with respectto P, m 20, £ 20,7, 20and k2 ¢,
— m subject to ETI 2 0. We may choose ¢, = 0, since P, ¢, ¢, and k are determined up
to an additive constant: no insurance payment is made if no loss occurs.

Proposition 2. Under deterministic auditing, when the fact that the policyholder has
suffered some loss is publicly observable, an optimal insurance contract 8 = {¢(-), M,
P} satisfies the following conditions:

M=(m,x] with m>0
10)=0

Hx)=t, if 0<x<m
tx)=x if x>m

with 0 < 1, < m.

Proposition 2 is established by Bond and Crocker (1997). It is depicted in Figure
3. When an accident occurs but the claim is not verified (i.e., 0 < x £ m), the incen-
tive compatibility requires the insurance payment to be constant: we then have #(x) =
t,. The payment should be larger than ¢, when the claim is verified (i.e., when x > m).
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Figure 3 Optimal insurance coverage under deterministic auditing when the .

insurer can observe whether an accident has occurred but not the
magnitude of the actual loss

Optimal risk sharing implies that the policyholder’s expected marginal utility (condi-
tional on the information of the insurer) should be equal to the marginal utility in the
no-accident state. This implies first that, in the no-verification region, an optimal insur-
ance contract entails overpayment of small claims (when 0 < x < #) and underpay-
~ment of large claims (when f, < x < m). Secondly, there is full insurance in the
verification region (i.e., when x > m).

Neither Figure 2 nor Figure 3 looks like the coverage schedule that are most fre-
quently offered by insurers for two reasons: first because of the upward discontinuity
at x = m and secondly because of overpayment of smaller claims in the case of Figure
3. In fact, such contracts would incite the policyholder to inflate the size of his claim
by intentionally increasing the damage. Consider for example the contract described
in Proposition 1 and illustrated by Figure 2. A policyholder who suffers a loss x less
than m but greater than m” would profit by increasing the damage up to x = m, insofar
as the insurer is not able to distinguish the initial damage and the extra damage.? In

¢ In fact, the policyholder would never increase the damage if and only if #(x) — x were non-increasing
over [0, x]. Given that #(x) is non-decreasing (see Lemma 2), this no-manipulability condition implies that
(x) should be continuous. Note that extra damages may either deliberately by the policyholder (arson is a
good example) or made thanks to a middleman, such as as car repairer or a health case provider. In such
cases, gathering verifiable information about intentional overpayment may be be too time consuming to the
insurer. See Bourgeon and Picard (1999) on corporate fire insurance when these is a risk of arson.
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such a case, the contract defined in proposition 1 is dominated by a contract
with a straight deductible, i.e., #(x) = Sup{0, x — m’} with M = (m’, X]. As shown by
Huberman, Mayers and Smith (1983) and Picard (1999), in different settings, a
straight deductible is indeed optimal under such circumstances.

We thus have:

Proposition 3. Under deterministic auditing, when the policyholders can inflate their
claims by intentionally increasing the damage, the optimal insurance contract & = {¢(*),
M, P} is a straight deductible

t(x) = Sup {0, x — m}
with m > 0 and M = (m, x].

Proposition 3 explains why insurance policies with straight deductibles are s0
frequently offered by insurers, in addition to the wellknown interpretations in terms
of transaction costs (Arrow, 1971) or moral hazard (Holmstrom, 1979).

10.3 COSTLY STATE VERIFICATION: DETERMINISTIC AUDITING
WITH MANIPULATION OF AUDIT COSTS

In the previous section, the policyholder was described as a purely passive agent. His
only choices were whether he files a claim or not and, should the occasion arise, what
is the size of the claim? As a matter of fact, in many cases, the policyholder involved
in an insurance fraud case plays a much more active part. In particular, he may try to
falsify the damages in the hope of receiving a larger insurance payment. Usually,
falsification goes through collusion with agents, such as healthcare providers, car
repairers or attorneys, who are in position to make it more difficult or even impossi-
ble to prove that the claim has been built up or deliberately created.” Even if fraudu-
lent claiming may be detered at equilibrium, the very possibility for policyholders
to falsify claims should be taken into account in the analysis of optimal insurance
contracts.

Two main approaches to claims falsification have been developed in the literature.
Firstly, Bond and Crocker (1997) and Picard (1999) assume that the policyholder
may manipulate audit costs, which means that they expend resources to make the

7 On collusion between physicians and workers, see the analysis of workers’ compensations by Dionne
and St-Michel (1991) and Dionne, St-Michel and Vanasse (1995). See Derrig, Weisberg and Chen (1994)
on empirical evidence about the effect of the presence of an attorney on the probability of reaching the
monetary threshold that restrict the eligibility to file a tort claim in the Massachusetts no-fault automobile
insurance system. In the Tort system, Cummins and Tennyson (1992) describe the costs to motorists expe-
riencing minor accidents of colluding with lawyers and physicians as the price of a lottery ticket. The lottery
winnings are the motorist’s share of a general damage award.
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verification of claims more costly or more time consuming to the auditor. In this
approach, detering the policyholder from manipulating audit cost is feasible and, some-
times, optimal. What is most important is the fact that the coverage schedule affects the
incentives of policyholders to manipulate audit costs, which gives a specific moral
hazard dimension to the problem of designing an optimal insurance contract. In another
approach, developed by Crocker and Morgan (1997), it is assumed that policyholders
may expend resources to falsify the actual magnitude of their losses in an environment
where verification of claims is not possible. Here also the coverage schedule affects the
incentives to claims falsification, but the cost of generating insurance claims through
falsification differs among policyholders according to their true level of loss. These dif-
ferential costs make it possible to implement loss-contingent insurance payments with
some degree of claims falsification at equilibrium.

In this section and the following, we review both approaches in turn. For the
sake of expositional clarity, we refer to them as costly state verification with manip-
ulation of audit cost and costly state falsification, although in both cases the policy-
holder falsifies his claim, i.e., he prevents the insurer observing the true level of
damages. In the first approach, the policyholder deters the auditor from performing
an informative audit while in the second one he provides a distorted image of his
damages.

The audit cost manipulation hypothesis has been put forward by Bond and
Crocker (1997) in the framework of a model with deterministic auditing. They assume
that policyholders may take actions (refered to as evasion costs) that affect the audit
cost. Specifically, Bond and Crocker assume that, after observing their loss x, a pol-
icyholder may incur expenditures e € {e,, e,}, with e, > e,, which randomly affects
the audit cost. If e = ¢;, then the audit cost is ¢ = ¢” with probability p; and ¢ = ¢*
with probability 1 - p;, with i € {0, 1}, ¢’ > ¢* and p, > p,. In other words, a large
level of manipulation expenditures makes it more likely that the audit cost will be
large. Without loss of generality, assume e, = 0. Let us also simplify by assuming c*
= 0. These expenditures are in terms of utility so that the policyholder’s utility func-
tion is now U(W)) — e.

Bond and Crocker assume that the actual audit cost is verifiable, so that the insur-
ance contract may be conditioned on ¢. Under deterministic auditing, an insurance
contract d is then defined by a premium P, a state-contingent coverage schedule #/(x)
and a state-contingent verification set M' = (m’, ], where i = Hifc=c" and i = L if
¢ = c*. Bond and Crocker also assume that the insurer can observe whether an acci-
dent has occurred, but not the size of the actual damages and (without loss of gener-
ality), they assume that no insurance payment is made if x = 0.

An optimal no-manipulation insurance contract maximizes the expected utility of
the policyholder subject to:

* The insurer’s participation constraint
* Incentive compatibility constraints that may be written as

o
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. { to if xe(0, m']
t'(x)= L o
>ty if xe(m', x|

fori=HorL.
» The constraint that the policyholder does not engage in audit cost manipulation

whatever his loss, i.e.,

pUW =x=P+t"(xX)+U=p)UW —x - P+t"(x)—e,
< pUW —=x = P+1" )+ = p)UW —x — P+t (x))

for all x in (0, Xx].
Bond and Crocker (1997) show the following proposition.

Proposition 4. The optimal no-manipulation insurance contract § = {#("), ¢*(), m",
m*, P} has the following properties:

G mf<xandm* =0
(i) (x) = x for x > m" and (x) = ¢ for 0 < x < m"
(iti) #(x) =x for X £ x < ¥ and (x) = S(x) for 0 < x < X where S(x) is given by

(pr = p)[UW —x—=P+1tf')-UW —x - P+S(x)]—e, =0.

The optimal no-manipulation contract is depicted in Figure 4. If there were no
possibility of audit cost manipulation, then the optimal insurance contract would
involve m* = 0 and *(x) = x for all x (since ¢, = 0) and m" > 0, fi(x) = x if x > m and
0 < t§ < my (see Proposition 2). This suggests that manipulating audit cost (i.e., choos-
ing e = ¢,) may be a profitable strategy for low values of x. Proposition 4 shows that
overcompensating easily verified losses is an appropriate ‘strategy to mitigate the pol-
icyholder’s incentive to engage in audit cost manipulation. This overcompensation is
defined by the S(x) function. S(x) denotes the minimum payoff in the c* state that
makes the policyholder indifferent between manipulating or not and X is the thresh-
old under which the policyholder chooses to evade if he is offered the full insurance
contract in the c* state.

Since overcompensating is costly to the insurer, it may be optimal to allow for
some degree of manipulation at equilibrium. Bond and Crocker provide a character-
ization of this optimal contract with audit cost manipulation at equilibrium. In par-
ticular, they show that there is still a subintervall [s,, s,] in (0, m") where the insurer
overcompensates the loss in the c* state, with “(x) = S(x) > x when s, £ x < 5,. Finally
they show that, when U exhibits constant absolute risk aversion, then the optimal con-
tract in the presence of audit cost manipulation results in lower payoffs and less mon-
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Figure 4 Optimal no-manipulation contract in the Bond-Crocker (1997)

model

itoring in the ¢/ state than would an optimal contract in an environment where claims
manipulation was not possible.?®

The analysis of Bond and Crocker (1997) is interesting firstly because it is a first
step toward a better understanding of the active part that policyholders may take in
insurance fraud. Furthermore, it provides a rationale for the fact that insurers may be
willing to settle small claims generously and without question when the loss is easily
monitored to forestall a claim that may be larger and more difficult to verify. From a
normative point of view, the Bond-Crocker analysis suggests that the appropriate way
to mitigate build-up is not to increase the amount of monitoring but to design cover-
age schedules in such a way that policyholders have less incentive to engage in fraud-
ulent claiming.

Two other aspects of the Bond-Crocker model have to be emphasized. First, the
optimal coverage schedule is such that small claims are overcompensated whatever
the audit cost, which may incite the policyholder to intentionally bring about damages.
This issue has already been addressed in section 3 and we will not hark back to it any
further. Secondly, Bond and Crocker assume that the actual audit cost is verifiable so

* The CARA assumption eliminates wealth effects from incentives constraints.
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that the insurance coverage may be conditioned on it. This is a very strong assump-
tion. In most cases, claims verification is performed by an agent (an expert, a con-
sulting physician, an attorney, an investigator . . .) who may have private information
about the cost entailed by a specific claim. Picard (1999) focuses attention on the
agency relationship that links the insurer and the auditor when policyholders may
manipulate audit costs and the insurer does not observe the cost incurred by the
auditor. His analysis may be summarized as follows.

The auditor sends a report x € [0, x] which is an evaluation of the magnitude of
the loss. Let X = @ when no audit is performed. Observing the magnitude of the loss
costs ¢, to the auditor. The policyholder may incur a manipulation cost e and, in such
a case, the cost of elicitating verifiable information about the size of the damages
becomes ¢, + b e, where the parameter b > 0 characterizes the manipulation technol-
ogy. Furthermore, verifiable information is necessary to prove that the claim has
been built up (i.e., to prove that x < x). The insurer does not observe the audit cost.
He offers an incentive contract to his auditor to motivate him to gather verifiable infor-
mation about fraudulent claims. Let ¢t and r be respectively the insurance payment
and the auditor’s fees. Contracts 7(-) and R(-) specify ¢ and r as functions of the
auditor’s report.” We have ¢ = T(¥) and r = R(X) where T: [0, ¥]U @ - R, and T
[0, Xx]UO > R.

The auditor-policyholder relationship is described as a three stage audit game. At
stage 0, a loss x, randomly drawn in [0, X], is privately observed by the policyholder.'
At stage 1, the policyholder reports a claim x € [0, X¥] and he incurs the manipula-
tion cost e 2 0. At stage 2, the claim is audited whenever X € M = (m, X]. When
x € M, the auditor observes x and he reports X € {x, x} to the insurer. If X = x # X,
the auditor incurs the cost ¢, + be so that his report incorporates verifiable informa-
tion. If X = x, the auditor’s cost is only c,. The payments to the policyholder and to
the auditor are respectively 7(x) and R(x).

In this setting, an allocation is described by & = {#(), M, P}, with M = (m, X] and
by ®(:): [0, X] = R, where ®(x) is the auditor’s equilibrium payoff (net of the audit
cost) when the loss is equal to x.

Contracts {7(), R(-)} are said to implement the allocation {8, w(*)} if at a perfect
equilibrium of the audit game, there is no audit cost manipulation (i.e., e = 0 for all
x), the claim is verified if and only if x € M and the net payoffs—defined by 7(-) and
R(-)—are equal to #(x), w(x) when the loss is equal to x."

In such a setting, the equilibrium audit cost is w(x) + ¢, if x € M and o(x) if
x € M. Furthermore, the auditor’s participation constraint may be written as

° The payment R(") is net of the standard audit cost c,.

' Contrary to the Bond-Crocker (1997) model, it is assumed that the insurer cannot observe whether
an accident has occurred, i.e., he cannot distinguish the event {x = 0} from {x > 0}. Furthermore, the manip-
ulation cost e is in monetary terms and not in utility terms as in Bond-Crocker (1997).

'* Picard (1999) shows that allowing for audit cost manipulation (i.e., ¢ > 0) at equilibrium is a weakly
dominated strategy for the insurer.
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J:V(co(x))dF(x )2 D | (7)

where V(*) is the auditor’s von Neumann-Morgenster utility function, with ¥ > 0,
V” <0 and D is an exogenous reservation utility level.

The optimal allocation {3, ®(')} maximizes the policyholder’s expected utility,
subject to the insurer’s and the auditor’s participation constraints and to the constraint
that there exist contracts {7(-), R(*)} that implement {3, ®(-)}.

Picard (1999) characterizes the optimal allocation in a setting where the policy-
holder can inflate their claim by intentionally increasing the damages, which implies
that {(x) — x should be nonincreasing (see section 2). His main result is the following:

Proposition 5. When the auditor is risk averse (V” < 0), the optimal insurance con-
tract is a deductible with coinsurance for high levels of damages:

tx)=0 if 0<x<m
tx)=x-m if m<x<x
t'x)e@0,1) if x<x<Xx

with0<m<x,<x and M= (m, x).
Furthermore, the auditor’s fees (expressed as function of the size of the claim)
are

r=r-btx) if x>m

r=rn if x<m

where r, and r, are constant.

Picard (1999) also gives sufficient conditions for m > 0 and x, < X. The contracts
characterized in Proposition 5 are depicted in Figure 5. We have #(x) = 0 when x is in
the no-verification set [0, m]. Hence, the threshold m may be interpreted as a
deductible under which no claim is filed. In the verification set, there is coinsurance
of large losses (i.e., the slope of the coverage schedule is less than one when x > x;).
Furthermore, the insurer should pay contingent fees to his auditor: the auditor’s fees
are (linearly) decreasing in the insurance indemnity payment.

The intuition for these results is as follows Let x € M. A deviation from truthful
revelation of loss without audit cost manipulation (ie., x=x,e=0)to x = x" > x,
e > 0 is profitable to the policyholder if 7(x") — ¢ > T(x) provided the claim is ac-
cepted by the auditor, which implies R(x") = R(x) — be. Both conditions are incom-
patible (for all e) if

R(x)+bT(x") < R(x)+bT(x)

e R

e
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Figure 5 Optimal insurance contract and auditor’s contingent fees

For all x € M, we have #(x) = T(x), ®(x) = R(x). This means that @(x) + bt(x) should
be nonincreasing for manipulation of audit cost to be detered. In other words, a 1 $
increase in the indemnity payment should lead at least to a b $ decrease in the auditor’s
fees. Because the auditor is risk averse, it would be suboptimal to have w’(x) < —bt’(x),
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which gives the result on contingent fees. Because of condition w'(x) = —b7(x), a
greater scope of variation in insurance payments entails a greater variability in the
auditor’s fees and thus a larger risk premium paid to the auditor for his participation
constraint to be satisfied. Some degree of coinsurance for large losses then allows the
insurer to decrease the auditor’s expected fees which is ultimately beneficial to the
policyholder. This argument does not hold if the auditor is risk-neutral and, in that
case, a straight deductible is optimal. Inversely, a ceiling on coverage is optimal when
the auditor is infinitely risk-averse or when he is affected by a limited liability
constraint.

104 COSTLY STATE FALSIFICATION

Let us come now to the analysis of state falsification first examined by Lacker and
Weinberg (1989)'? and applied to an insurance setting by Crocker and Morgan
(1997):"? the policyholders are in position to misrepresent their actual losses by engag-
ing in costly falsification activities. The outcome of these activities is a claim denoted
by y € R,. The insurer only observes y: contrary to the costly state verification, setting
verifying the actual magnitude of damages is supposed to be prohibively costly.
Hence, an insurance contract only specifies a coverage schedule ¢ = T(y). Claims fal-
sification is costly to the policyholder, particularly because it may require colluding
with an agent: an automechanics, a physician, an attorney . . . Let C(x, y) be the fal-
sification cost. The policyholder’s final wealth becomes

W, =W —x=P+T(»)-C,x).

Let y(x) be the (potentially falsified) claim of a policyholder who suffers an actual
loss x. Given a falsification strategy y(-): [0, X] — R., the policyholder’s final wealth
may be written as a function of his loss:

Wix)sW —x—-P+T(y(x) - C(y(x),x) (8)

An optimal insurance contract maximizes EU(W(x)) with respect to 7(-) and P
subject to

J J; T(y(x)) dF (x) )
y(x)e Arg,» Max T(y’)-C(y’,x) forallx€[0, x] (10)
"2 See also Maggi and Rodriguez-Clare (1995).

"* See also Crocker and Tennyson (1999) and Dionne and Gagné (1997) on econometric testing of the-
oretical predictions of models involving costly state falsification.

P o

I TR I T
it




332 Handbook of Insurance

(9) is the insurer’s participation constraint and (10) specifies that y(x) is an optimal
falsification strategy of a type-x policyholder.

Since the payments {P, T(:)} are defined up to an additive constant, we may
assume T(0) = 0 without loss of generality. For the time being, let us restrict atten-
tion to linear coverage schedule, i.e., 7(y) = ay + B. Our normalization rule gives
B = 0. Assume also that the falsification costs borne by the policyholder depend upon
the absolute amount of misrepresentation (y — x) and, for the sake of simplicity, assume
C = y(y — x)’/2, where 7 is an exogenous cost parameter. (10) then gives

04
yx)=x+— %))
Y

Hence the amount of falsification y(x) — x is increasing in the slope of the coverage
schedule and decreasing in the falsification cost parameter. The optimal coverage
schedule will tradeoff two conflicting objectives: providing more insurange to the pol-
icyholder, which requires increasing o, and mitigating the incentives to claim falsifi-
cation by lowering o.

The insurer’s participation constraint (9) is binding at the optimum, which gives

2

I 2
P=| 0x + 2 | dF (x) = aEx + 2=
0 Y Y

(8) then gives

2

W, 00 =W —(1 - 0)x — GEx — —
2y

Maximizing EU(W,(x)) with respect to a leads to the following first-order

condition

aaE_oij' = {(x —Ex- %)U’(W,(x))} =0 (12)

and thus

OEU 1 1
— |y =——U|W - Ex——
= o YU( X 2Y)<0 (13)

af—aulw = E{(x— E)U'W - x)} >0 (14)

We also have

FPEU 1 i
e =—?EU’(W/-(x))+E{(x—Ex—%) U”(W/'(x))}<0 (15)

which implies that 0 < o < 1 at the optimum. Hence, under costly state falsification,
the optimal linear coverage schedule entails some degree of coinsurance and (11)
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shows that there exists a certain amount of claims falsifications at equilibrium. This
characterization results from the trade-off between the above mentioned conflicting
objectives: providing insurance to the policyholder and detering him from engaging
in costly claim falsification activities.

This trade-off is particularly obvious when U(:) is quadratic. In that case, we may
write

EUW,)=EW, -nVarW,;) n>0 (16)

and straightforward calculations give

2nyo?

- 1+2nyo? (17

at the optimum, where ¢ = Var x.

Hence, the coinsurance coefficient o is an increasing function of the cost
parameter 7y, of the risk aversion index M and of the variance of the loss. We
have

T (y(x)) =0ox+ 9—2—
Y

which give T(y(x)) > x if x < x, and T( ¥(x)) < x if x > x, with x, = 0*/y(1 — c). Hence
in that case, the optimal indemnification rule overcompensates small lossess and it
overpays larger ones. This is depicted in Figure 6.

Assume now that the insurer observes whether a loss occured or not, as in the
paper by Crocker and Morgan (1997). Then an insurance contract is defined by a
premium P, an insurance payment #, if x = 0 and an insurance coverage schedule 7(y)
to be enforced if x > 0. In that case, a natural normalization rule is #, = 0. We still
assume that 7( y) is linear: 7(y) = oy + B. For the sake of simplicity, we also assume
that U(-) is quadratic.

The insurer’s participation constraint and (11) give

P=aEx+[l—f(0)](9$-+B) (18)

which implies

2

W,=W—(xEx—[1—f(O)](%-+B) ifx =0
o’ o?
W_,.=W—oc5x-[1—f(0)](—y—+[5)-(1—m)x+ﬁ+57 if x>0

and we obtain
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T(y(x)

e g 4» x
Figure 6 Equilibrium indemnification under costly state falsification
aZ
EW, =W—Ex-57[1-f(0)] (19)

and

Var(Wf)=f(o>[1—f<o>1(ﬁ+%) +(1~oc)202—2f(0)(1—a)(ﬁ+%)Ex 20)

Maximizing EU(W)) defined by (16) with respect to o and B gives the following
result

_2nyé?
T 1+21y6? S
_ o?
p=a-wr-L 22)

where 6° = Var(x | x > 0) and ¥ = E(x | x > 0) i.e., 6° and ¥ are respectively the
variance and the expected value of the magnitude of damages conditional on a loss
occurring. .

(21) is similar to (17) and it may be interpreted in the same way. The fact that o
is strictly positive (and less than one) means that some degree of insurance is pro-
vided but also that there is claims falsification at equilibrium. f may be positive or



Economic Analysis of Insurance Fraud 335

negative, but the insurance payment 7(y(x)) is always positive.'* As in the previous
case, small losses are overcompensated and there is undercompensation for more
severe losses.

- Crocker and Morgan (1997) obtain a similar characterization without restricting
themselves to a linear-quadratic model. They characterize the allocations, {#(°),
y(), P}, with #(-): [0, X] = R, and y(*): (0, X] — R,, that may be implemented
by a coverage schedule 7(y)."* For such an allocation, there exists 7(-): R, = R, such
that

y(x) € Arg max{T (y)-C(y",x)}
and
t(x)=T(y(x)) forallx

The Revelation Principle (Myerson, 1979) applies in such a context, which means
that implementable allocations may be obtained as the outcome of a revelation game
in which

1. The insurance payment ¢ and the action y are defined as functions of a message
x € [0, x] of the policyholder, i.e., t = t(X), y = y(X).
2. Truthtelling is an optimal strategy for the policyholder, i.e.,

x € Arg max{#(%) - C(y(%), x)} (23)

for all x in (0, x].

Such an allocation {#(*), y(*)} is said to be incentive compatible. The optimal allo-
cation maximizes the polilcyholder’s expected utility EU(W,(x)) with respect to #(-),
() and P subject to the insurer’s participation constraint and to incentive compati-
bility constraints. Using a standard technique of incentives theory, Crocker and
Morgan characterize the optimal solution of a less-constrained problem in which a
first-order truthtelling condition is substituted to (24). They obtain the following
result.'s"

'* When B is negative, the optimal coverage schedule is equivalent to a deductible m = —B/o with a coin-
surance provision for larger losses, i.e., T(v) = Sup{0, a(y — m)}.

'* Crocker and Morgan assume that the insurer can observe whether a loss occurred or not. Hence, there
may be falsification only if x > 0.

'* There are some minor differences between the Crocker-Morgan’s setting and ours. They are not men-
tioned for the sake of brevity.

'” The second-order condition for incentive compatibility requires y(x) to be monotonically increasing.
If the solution to the less constrained problem satisfies this monotonicity condition, then the optimal allo-
cation is characterized as in proposition 6. See Crocker and Morgan (1997) for a numerical example. If
this is not the case, then the optimal allocation entails bunching on (at least) an interval (x’, x”) C [0, X],
i.e., ¥(x) = ¥, t(x) = t for all x in (x", x”). In such a case, the coverage schedule 7(y) that sustains the
optimal allocation is not differentiable at v = y.
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Proposition 6. The optimal solution to the insurance problem under claims falsifi-
cation satisfies

(1) y0,)=0,y(x)=xand p(x) >xif0<x <X
S Gi) 0)=r(x)=0and (x)>0if0<x <X
(iii) #0,) > 0 and «(¥) < ¥.

Proposition 6 extends the results already obtained in this section to a more general
setting, with a non linear coverage schedule. The optimal solution always entails
some degree of falsification except at the top (when x = X) and at the bottom (when
x — 0,). The insurance payment is increasing in the magnitude of the actual damages
and it provides overinsurance (respect. underinsurance) for small (respect. large)
losses.

10.5 COSTLY STATE VERIFICATION: THE CASE OF
RANDOM AUDITING

We now come back to the costly state verification setting. Under random auditing, the
insurer verifies the claims with a probability that depends upon the magnitude of
damages. The insurance payment may differ depending on whether the claim has been
verified or not. A policyholder who suffers a loss x files a claim x that will be audited
with probability p(x). If there is an audit, the true damages are observed by the insurer
and the policyholder receives an insurance payment £,(x, x). If there is no audit, the
insurance payment is denoted £(X).
When a policyholder with damages x files a claim x, his expected utility is

[1-pOIUW —P-x+1y )+ pRUW — P—x +1,(x, X))

The Revelation Principle applies to this setting and we can restrict attention to incen-
tive compatible insurance contracts, that is to contracts where the policyholder is given
incentives to report his loss truthfully. Such incentive compatible contracts are such
that

(1= p)UW —P-x+ty(x))+ px)UW ~ P—x+1t,(x,x))
2[1-pXJUW —=P-x+ty(x)+ p(X)UW — P-x+14(x, X)) (24)

for all x, x # x. .
Let us assume that the net payment from the policyholder to the insurer P — ¢,(x,
x) is bounded by a maximal penalty that can be imposed in case of misrepresentation
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of damages (i.e., when x # x). This maximal penalty'® may depend on the true level
of damages x and will be denoted B(x). Hence, we have

P—t,(x,x)<B(x) if x#x (25)

For instance, Mookherjee and Png (1989) assume that the wealth of the policyholder
is perfectly liquid and that his final wealth can be at most set equal to zero in case
of false claim detected by audit. We have B(x) = W — x in that case. Fagart and Picard
(1999), assume that the policyholder is affected by a liquidity constraint and that
the liquid assets of the policyholder have a given value B. The maximal penalty
is then B(x) = B for all x. Another interpretation of (25) is that B(x) = B is an
exogenously given parameter that represents the cost (in monetary terms) incurred
by a policyholder who is prosecuted after he filed a fraudulent claim detected by
audit."”

This upper bound on the penalty plays a crucial role in the analysis of optimal
insurance contracts under random auditing. Indeed, by increasing the penalty, the
insurer could induce truthtelling by the policyholder with a lower probability of audit-
ing, which, since auditing is costly, reduces the cost of the private information. Con-
sequently, if there were no bound on the penalty, first-best optimality could be
approximated with very large fines and a very low probability of auditing. Asymetry
of information would not be a problem in such a case.

In equilibrium, the policyholder always reports his loss truthfully. Hence, it is
optimal to make the penalty as large as possible since this provides maximum incen-
tive to tell the truth without affecting the equilibrium pay-offs.”® We thus have

ty(x,x)=P-Bkx) if x=#x

Finally; we assume that the policyholder’s final wealth W, should be larger than a
lower bound denoted A(x). This bound on the policyholder’s final wealth may simply

'® The Revelation Principle does not apply any more if the maximal penalty also depend on the claim
x. In such a case, there may be false report at equilibrium.

'° Under this interpretation, it may be more natural to assume that the policyholder should pay the penalty
B in addition to the premium P, since the latter is usually paid at the beginning of the time period
during which the insurance policy is enforced. In fact, both assumptions are equivalent when the policy-
holder is affected by a liquidity constraint. Indeed, in such a case, it would be optimal to fix the insurance
premium P at the largest possible level (say P = P) and to compensate adequately the policyholder by
providing large insurance payments ty and ¢, unless a fraudulent claim is detected by audit. This strategy
provides the highest penalty in case of fraud, without affecting equilibrium net payments ¢ty — P and
ty — P. If the law of insurance contracts specifies a penalty B to be paid in case of fraudulent claim, we
have P — t,(x, x) < P + B which corresponds to (25) with B(x) = P + B.

? In a more realistic setting, there would be several reasons for which imposing maximal penalties
on defrauders may not be optimal. In particular, audit may be imperfect so that innocent individuals may
be falsely accused. Furthermore, a policyholder may overestimate his damages in good faith. Lastly, very
large fines may create incentives for policyholders caught cheating to bribe the auditor to overlook their
violation.



338 Handbook of Insurance

result from a feasibility condition on consumption. In particular, we may have W, 2
0 which gives A(x) = 0 for all x. The lower bound on final wealth may also be logi-
cally linked to the upper bound on the penalty: when B(x) corresponds to the value
of liquid assets of the policyholder, we have P — 1\(x) < B(x) and P - t,(x, x) < B(x)
for all x which implies W,;2 W — x — B(x) = A(x). Mookherjee and Png (1989) assume
B(x) = W - x, which gives A(x) = 0. Fagart and Picard (1999) assume B(x) = B, which
gives A(x) = W -x ~ B.

Let t,(x) = t4(x, x). Under random auditing, a contract will be denoted & = {¢,(*),
(), p(), P}. An optimal contract maximizes

EU = J'O; {1-pUW =P =x+ty(x))+ p(x)UW = P=x+1,(x))} dF (x) (26)
with respect to P, ,(°), ti(*) and p(-) subject to the followwing constraints:
ETl=P- f; {[1- p()] ey () + pO) [t (x) + e[} dF (x) 2 0 | @7

[1=pXWUW - P-x+ty(x)+ px)UW — P-x+1t,(x))
> (1= pEWUW = P=x +ty®)+ pAUW —x - Bx)) forallx,i#x  (28)

W-P-x+ty(x)2A(x) forallx (29)
W-P-—x+t,(x)2A(x) forallx (30)
0< p(x)<1 forallx 31

(27) 1s the insurer’s participation constraint. Inequalities (28) are the incentive com-
patibility constraints that require the policyholder to be willing to report his level of
loss truthfully. (29), (30) and (31) are feasibility constraints.?!

Mookherjee and Png (1989) have established a number of properties of an optimal
contract. They are synthetized in proposition 7 hereafter. In this proposition v(x)
denotes the expected utility of the policyholder when his loss is x, i.e.,

v(x)=[1- p()UW = P=x+ty(x)+ p(x)UW = P—x+1,(x)).

Proposition 7. Under random auditing, an optimal insurance contract 8 = {£,(*), tx(*),
p(*), P}, has the following properties:

' Deterministic auditing may be considered as a particular case of random auditing where p(x) = 1 if
x € Mand p(x) =0 ifx € M, and Lemma | may be obtained as a consequence of the incentive compa-
tibility conditions (28). If x, x € M, (28) gives ty(x) 2 ty(x). Interverting x and X gives fy(X) 2 tx(x).
We thus have ty(x) =1, for all x in M“. If x € M and x € M*, (28) gives 1 (x) 2 ty(x) = to. If t,(x) = 1, for
x € [a, b] C M, then it is possible to choose p(x) = 0 if x € [a, b), and to decrease P, the other elements
of the optimal contract being unchanged. The policyholder’s expected utility would increase, which is a
contradiction. Hence t,(x) > t, if x € M.
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(i) p(x) < 1 for all x if v(x) > U(W - x — B(x)) for all x
(i1) t,(x) > ti(x) for all x such that p(x) > 0
(iii) If p(x) > O for some x then there exists x such that v(x) = [1 — p(x)]JUW - x —
P + t\(X)) + p(x)U(W - x — B(x))
(iv) If v(x) > u(W - x — B(x)) for all x and ty(x) = Min{ty(x), x € [0, X]}, then
p(%) =0 and p(x”) > p(x’) if ty(x”) > ty (x').

In Proposition 7, the condition “v(x) > U(W — x — B(x)) for all x” means that non-
trivial penalties can be imposed on those detected to have filed a fraudulent claim.
Let us call it “condition C”. Mookherjee and Png (1989) assume B(x) = W — x, which
means that the final wealth can be set equal to zero if the policyholder is detected to
have lied. In such a case, C means that the final wealth is always positive at the
optimum and a sufficient condition for C to hold is U’(0,) = + co. If we assume B(x)
= B, i.e., the penalty is upward bounded either because of a liquidity constraint or
because of statutory provisions, then C holds if B is large enough.?? If C does not
hold at equilibrium, then the optimal audit policy is deterministic and we are back to
the characterization of Section 2. In particular, the B = 0 case reverts to determin-
istic auditing.

From (i) in proposition 4, all audits must be random if C holds. The intuition for
this result is that under C, the policyholder would always strictly prefer not to lie if
his claim were audited with probability one. In such a case, decreasing slightly the
audit probability reduces the insurer’s expected cost. This permits a decrease in the
premium P, and thus an increase in the expected utility of the policyholder, without
inducing the latter to lie. (ii) shows that the policyholder who has been verified to
have reported his damages truthfully should be rewarded. The intuition is as follows.
Assume t4(x) < tM(x) for some x. Let #4(x)— respect. t\(x)— be increased (respect.
decreased) slightly so that the expected cost p(x)z,(x) + [1 — p(x)]tm(x) is unchanged.
This change does not disturb the incentive compatibility constraints and it increases
the expected utility which contradicts the optimality of the initial contract. If ¢,(x) =
tr(x), the same variation exerts no first-order effect on the expected utility (since we
start from a full insurance position) and it allows the insurer to reduce p(x) without
disturbing any incentive compatibility constraint. The expected cost decreases, which
enables a decreases in the premium P and thus generates an increase in the expected
utility. This also contradicts the optimality of the initial contract. (iii) shows that for
any level of loss x audited with positive probability, there exists a level of loss x such
that the policyholder who suffers the loss x is indifferent between filing a truthful
claim and reporting x. In other words, when a claim x is audited with positive prob-
ability, a decrease in the probability of audit p(x) would induce misreporting by the
policyholder for (at least) one level of loss x. Indeed if this were not the case, then
one could lower p(x) without disturbing any incentive compatibility constraint. This

2 See Fagart and Picard (1999).
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variation allows the insurer to save on audit cost and it enables a decrease in the
premium. The policyholder’s expected utility increases which contradicts the opti-
mality of the initial contract. Finally, (iv) shows that, under C, the claim correspond-
ing to the lowest indemnity payment in the absence of audit should not be audited.
All other claims should be audited and the larger the indemnity payment in the absence
of audit, the larger the probability of audit. Once again, the intuition is rather straight-
forward. A policyholder who files a fraudulent claim x may be seen as a gambler who
wins the prize #,(x) if he has the luck not to be audited and who will pay B(x) if he
gets caught. The larger the prize, the larger the audit probability should be for fraud-
ulent claiming to be detered. Furthermore it is useless to verify the claims corre-
sponding to the lowest prize since it always provides a lower expected utility than
truthtelling.

The main difficulty if one wants to further characterize the optimal contract
under random auditing is to identify the incentive compatibility constraints that are
binding at the optimum and those that are not binding. In particular, it may be that,
for some levels of damages, many (and even all) incentive constraints are binding and,
for other levels of damages none of them are binding.”® Fagart and Picard (1999)
provide a full characterization of the optimal coverage schedule and of the audit policy
when the policyholder has constant absolute risk aversion and the penalty is constant
(ie., B(x)=B).

Proposition 8. Assume U(-) exhibits constant absolute risk aversion and C holds at
the optimum. Then there exist m > 0 and & € (0, m) such that

tyx)=x-kandty(x)=x-k-nx) if x>m
tixX)=ty(x)=0 if x<m

withn’(x), n(m) =m - k,n(x) > 0 when x — oo
Furthermore, we have

0< px)<1, p’'(x)>0, p"(x)<0 when x>m
pim)=0

px)—> pe(0,1) when x— o

The optimal contract characterized in proposition 8 is depicted in Figure 7. No
claim is filed, when the magnitude of damages is less than m. When the damages
2 Technically, this rules out the possibility of taking up the differential approach initially developed

by Guesnerie and Laffont (1984) and widely used in the literature on incentives contracts under adverse
selection.
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exceed the threshold, then the insurance payment is positive and it is larger when the
claim is audited than when it is not—which confirms proposition 7-(ii)—. However
the difference is decreasing when the magnitude of damages is increasing and this
difference goes to zero when the damages go to infinity (when X = +eo). Marginal
damages are fully covered in case of audit, i.e., #i(x) = 1 if x > m. In other words, the
insurance coverage includes a constant deductible 4 if the claim is verified. If the claim
is not verified, then there is also an additional deductible that disappears when the
damages become infinitely large. Furthermore the probability of audit is a concave
increasing function of the damages and this probability goes to a limit p < 1 when x
goes to infinity.

To understand the logic of these results, observe that any variation in insurance
payment (with a compensating change in the premium) entails two effects. Firstly, if
affects the risk sharing between the insurer and the policyholder and, of course, this
is the raison d’étre of any insurance contract. Secondly, it may also modify the audit
policy for incentive compatibility constraints not to be disturbed. This second effect
is more difficult to analyze because the effects of variations in insurance payment on
the incentive to tell the truth are intricate. As above, we may describe the decision
making of the policyholder as if he were a gambler. When the true level of damages
is x, filing a fraudulent claim X # x amounts to choose the lottery “earning t{(X) with
probability 1 — p(x) or losing B with probability p(x)” in preference to the lottery
“earning #y(x) with probability 1 — p(x) or earning #,(x) with probability p(x)”. If the
incentive compatibility constraint corresponding to x and X is tight, then any increase
in #,(x) should be accompanied by an increase in p(x) for fraudulent claiming to be
detered. However, simultaneously, the increase in f,(x) may also affect the optimal
strategy of a policyholder who has actually experienced a loss X and who (for instance)
intended to file another fraudulent claim, say x” # x. This policyholder may come back
to truthfulling after the increase in t\(x), even if t\(x") is slightly increased. This
sequence is possible if the preferences of our gambler over lotteries depend upon his
wealth, i.e., upon the magnitude of his loss. This suggests that, without simplifying
assumptions, analyzing the consequences of a variation in the coverage schedule on
the policyholder’s strategy may be quite intricate.

The problem is much more simple under constant absolute risk aversion since
weath effects disappear from the incentive constraints when utility is exponential.
Fagart and Picard (1999) have considered this case. They show that, when U(") is
CARA, the only incentive constraints that may be binding at the optimum correspond
to loss levels x € 1 C [0, x] for which the policyholder receives the smallest indem-
nity payment. This results from the fact that, when U(") is CARA, the loss x disap-
pears from (28). We know from Proposition 5-(ii) and (iv) that the claim is not audited
in that case, which allows us to assume #{(x) = t,(x) = 0 if x € I since, as before, the
optimal insurance coverage schedule {7\(*), ¢,(*), P} is defined up to an additive con-
stant. The best risk-sharing is reached when / = [0, m], with m > 0. Under constant
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absolute risk aversion, the fact that small claims should not be audited can thus be
extended to the case of random auditing.

When the loss exceeds m, it is optimal to provide a positive insurance payment.
Any increase in fy(x) should be accompanied by an increase in p(x) for fraudulent
claiming to be detered. Let ¢(¢y) be the probability of audit for which the lottery
“earning fy(x) with probability 1 — p(x) or losing B with probability p(x)” and the
status quo (i.e., a zero certain gain) are equivalent for the policyholder when his true
loss level x is in I. The probability ¢(zy) does not depend on X when U(*) is CARA
and we have ¢’ > 0, ¢” < 0. The optimal audit probability is such that p(x) = ¢(#\(x))
for all x > m.

Let ¢ ¢’(¢M(x))dt(x) be the additional expected audit cost induced by a marginal
increase in the insurance payment dt\(x). Adding this additional expected audit
cost to the variation in the insurance payment itself gives the additional expected total
cost [1 + ¢ ¢'(1p(x))]dtM(x). When a claim is audited, the additional cost induced by an
increase in the insurance payment is just df(x). The difference in additional cost
per $ paid as coverage explains why a larger payment should be promised in case of
audit—i.e., £,(x) > t\{x)—. More precisely, ¢” < 0 implies that 1 + ¢ ¢’(#(x)) is decreas-
ing when t\(x) is increasing. Hence, the difference in the addditional expected
cost per $ paid as coverage decreases when )(x) increases. This explains why the
additional deductible ¢,(x) — t\{x) = N(x) is decreasing and disappears when x is
large.?* |

10.6 MORALE COSTS AND ADVERSE SELECTION

Thus far we have assumed that the policyholders are guided only by self-interest and
that they didn’t feel any morale cost after filing a fraudulent claim. In other words,
there was no intrinsic value of honesty to policyholders. In the real world, thank
God, dishonesty creates morale problems and a lot of people are detered to file fraud-
ulent claim even if the probability of being caught is small and the fine is moderate.”
However, more often than not, the insurers are unable to observe the morale
cost incurred by their customers which lead to an adverse selection problem.? In such
a situation, the optimal audit policy as well as the competitive equilibrium in the
insurance market (in terms of coverage and premium) may be strongly affected by
the distribution of morale costs in the population of policyholders. In particular,

# Let Ux) =1 = px)IUW = P ~ x + ty(x)) + p(x)U(W - P - x + t4(x)) be the expected utility of a
policyholder who has incurred a loss <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>