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Abstract

This chapter provides a comprehensive survey of the literature on the financial pricing
of property-liability insurance and provides some extensions of the existing literature.
Financial prices for insurance reflect equilibrium relationships between risk and return
or, minimally, avoid the creation of arbitrage opportunities. We discuss insurance
pricing models based on the capital asset pricing model, the intertemporal capital asset
pricing model, arbitrage pricing theory, and option pricing theory. Discrete time dis-
counted cash flow models based on the net present value and internal rate of return
approaches are also discussed as well as pricing models insurance derivatives such
as catastrophic risk call spreads and bonds. We provide a number of suggestions for
future research.
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19.1 INTRODUCTION

This chapter surveys the literature on the financial pricing of insurance and provides
some extensions of the existing literature. Financial pricing differs from traditional
actuarial pricing by taking into account the role played by markets in determining
the price of insurance. Thus, policy prices should reflect equilibrium relationships
between risk and return or, minimally, avoid the creation of arbitrage opportunities.
By contrast, traditional actuarial models, such as the actuarial premium principle
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models (Goovaerts, de Vylder, and Haezendonck 1984), take a supply-side perspec.
tive, incorporating the assumption that prices are primarily determined by the insurer.
The traditional supply-side approach is gradually being replaced by the financia]
pricing approach, reflecting models developed by both actuaries and financig]
economists.'

Financial theory views the insurance firm as a levered corporation with debt and
equity capital. The insurer raises debt capital by issuing insurance contracts, which
are roughly analogous to the bonds issued by non-financial corporations. However,
insurance liabilities are not like conventional bonds but more like structured Securities,
where payoffs are triggered by various contingencies. The payment times and amounts
for property-liability insurance policies are stochastic, determined by contingent
events such as fires, earthquakes, and liability judgments. The types of rigks
incorporated in insurance liabilities drive both the pricing and capital structure
decisions of insurers. Insurance policies also differ from bonds issued by non-
financial corporations because the holders of the insurer’s debt instruments are
also its customers (Merton and Perold 1993). Consequently, the insurer’s debt in-
struments should be priced to earn a fair economic profit reflecting the risks borne by
the insurer. The derivation of the fair profit i1s one of the principal themes of this
chapter.

Insurance financial pricing models have been developed to price this special class
of liabilities using various strands of financial theory. The earliest models were based
on the capital asset pricing model (CAPM). These models provide important insights
but are too simple to be used in realistic situations, especially in light of financial
research showing that factors other than the CAPM beta determine security returns
(e.g., Fama and French 1993, 1996, Cochrane 1999). More promising are discrete and
continuous time discounted cash flow (DCF) models, analogous to the net present
value (NPV) and internal rate of return (IRR) models used in corporate capital
budgeting. Option models also provide important insights into insurance pricing. The
most recent research focuses on the pricing of financial instruments based on losses
from property catastrophes such as hurricanes and earthquakes.

Although the primary focus in this chapter is on the theory of insurance pric-
ing, we also briefly discuss some significant empirical contributions on the topic.
We first provide a conceptual overview of the capital structure of insurance firms, with
insurance policies viewed as risky debt capital. We then turn to a discussion
of financial pricing models, beginning with the most basic model, the insurance
capital asset pricing model (CAPM). More complex and realistic models are then
discussed, including the newly-developed catastrophic risk (CAT) bonds and
options.

' Recent actuarial papers reflecting the financial approach include Gerber and Landry (1997) and Gerber
and Shiu (1998).
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19.2 INSURANCE AS RISKY DEBT

Insurance companies are levered corporations that raise debt capital by issuing a
specific type of financial instrument—the insurance policy. This section outlines
the insurance pricing problem, describes the characteristics of insurance debt that
should be reflected in financial pricing models, and discusses insurer capital
structure.

In order to operate an insurance enterprise, the firm’s owners commit equity
capital to the firm (the reasons for doing so are discussed below) and then issue insur-
ance policies, which are characterized by an initial premium payment, i.e., a cash
inflow to the insurer, followed by a stream of cash outflows representing loss pay-
ments. During the period between the premium payment and the final satisfaction of
all claims against the policy, the insurer invests the unexpended premium balance as
well as the equity capital committed to the firm, receiving investment income. The
equity capital is assumed to flow back to the owners as the loss obligations are
satisfied. The firm’s underwriting profit (the difference between premium inflows and
loss outflows) and investment income expose the insurer to income tax liabilities
which generate additional cash flows. Thus, the principal cash flows that must be taken
into account in insurance pricing consist of premiums, losses, investment income,
equity capital, and taxes. :

Timing differences between the funds that flow into the company as the result of
the commitment of capital and issuance of insurance policies generate the firm’s assets
as well as two liability accounts—the unearned premium reserve and the loss reserve.
The unearned premium reserve reflects premiums that have been paid to the company
for coverage not yet provided and is similar to a short-term loan (most policy cover-
age periods are a year or less) with no unusual risk characteristics. The loss reserve,
which arises because claim payments lag premium payments and loss occurrences,
represents the company’s estimate of the losses it will eventually have to pay less the
payments that have already been made.” The loss reserve is similar to an exotic option
or structured security. Neither the magnitude nor the timing of loss payments are
known in advance but rather depend upon contingent events such as the occurrence
of accidents and the outcomes of liability lawsuits. In addition, loss cash flows can
be generated by events that were unknown and/or impossible to predict when the
policies were issued such as liabilities arising from exposure to environmental and
asbestos exposures.’ Because the realizations of the loss cash flows may be correlated

? In economic terms, the true value of the reserve is its market value which reflects the timing of expected
loss payments on claims known to the insurer, an expectation of payments on accidents incurred which
have not been reported to the insurer as of the statement date, a risk premium, and its value as a tax shield.
However, in most industrialized countries, regulators require that insurers state their policy obligations at
nominal (non-discounted) values.

? Actuaries often refer to the uncertainty regarding the ultimate amount of loss as process risk. The risks
associated with the inability to accurately model the frequency and severity of all future loss events is
known as parameter risk.
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with movements in the overall financial market, insurance prices should iIncorporate
risk premia to compensate insurers for bearing market risk.

Equity capital is the other major component of the capital structure of an i,-
surance company. Although holding equity capital is costly due to regulation, the
double taxation of dividends, and the various agency costs associated with Operating
an insurance company, insurers maintain capital in excess of regulatory requirements
for a variety of reasons. Avoiding financial distress costs provides one important
motivation for insurers to hold capital. Financial distress costs include direct costs
resulting from bankruptcy as well as indirect costs which may affect the firm’s ability
to retain its relationships with key employees, customers, or suppliers. Merton and
Perold (1993) argue that insurers also hold capital because the customers of
insurers, who purchase insurance to reduce their exposure to unfavorable contingen-
cies, are particularly concerned about the ability of the insurer to satisfy its financial
obligations. Insurers also may hold equity because they issue illiquid contracts
containing private information (D’Arcy and Doherty 1990, Cummins, Phillips, and
Smith 1998, 2000). The benefits of this private information are only realized over time
and the contracts cannot be liquidated for their full value should the firm suffer
a shock to its capital resources. Finally, various agency costs, borne by the share-
holders of the firm, also can be mitigated by holding additional levels of capital
(e.g., Myers and Majluf 1984). Evidence that P/L insurers have strong motivations
for holding equity capital is provided by the capital-to-asset ratio in the U.S. P/L
industry, which equaled 33 percent in 1995. By comparison, the capital-to-asset ratio
for life insurers and commercial banks are much lower, approximately 6.5 and 3.5
percent in 1995.

Insurers invest primarily in financial assets, with a heavy emphasis on stocks
and bonds. Insurers select assets with the objective of maximizing return while main-
taining acceptable levels of credit risk exposure in their bond portfolios, exposure to
price volatility from their stock portfolios, and exposure to price and exchange rate
volatility from assets denominated in foreign currencies. In addition, insurers man-
age the duration and convexity of their asset and liability portfolios to reduce their
exposure to interest rate risk (Staking and Babbel 1995). Many insurers also use off-
balance-sheet contracts such as financial derivatives to manage their exposure
to these same risks (Cummins, Phillips, and Smith 1997, 1998, Santomero and Babbel
1997).

The risks that should be taken into account in pricing insurance contracts are sum-
marized in Table 1. Insurance pricing models differ in the degree to which these risks
are recognized. The existing insurance financial pricing models tend to focus on sys-
tematic risk, inflation risk, and interest rate risk. More research is needed on unified
models that incorporate all types of risk.

* The capital-to-asset ratios are from the Federal Reserve Flow of Funds Accounts (Washington, D.C..
Board of Governors of the Federal Reserve System).
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Table 1
Pricing Characteristics and Risks in Property-Liability Insurance

Uncertainty Regarding Frequency and Severity (Process Risk)
Uncertainty Regarding Models to Estimate Losses (Parameter Risk)
Interest Rate (Duration and convexity) Risk

Inflation Risk

Payout Pattern Risk

Systematic (Market) Risk

Deftault Risk

19.3 A SIMPLE CAPM FOR INSURANCE PRICING

The first financial models of the insurance firm were based on a very simple algebraic
approach. The first model of this type was developed by Ferrari (1969). His
paper presents the basic algebraic model of the insurer but does not link the model
to the concept of market equilibrium. An important advance in insurance finan-
cial pricing was the linkage of the algebraic model of the insurance firm with
the capital asset pricing model (CAPM). The resulting model is often called the
insurance CAPM.

The insurance CAPM was developed in Cooper (1974), Biger and Kahane (1978),
Fairley (1979), and Hill (1979). The derivation begins with the following simple model
of the insurance firm:

Y=I+[L=FA4+FP (1)

where ¥,/ = net income and investment income, respectively,
I, = underwriting profit (loss) = premium income less expenses and losses,
A = invested assets of the firm
P = premiums collected from policyholders to compensate insurers for the
risks they underwrite,
r, = rate of investment return on assets, and
¥, = rate of return on underwriting (as a proportion of premiums).

Tildes indicate stochastic variables. Writing (1) as return on equity and using the
balance sheet identity 4 = R + G, where R = (undiscounted) reserves and G = equity,
one obtains:

- (R N _P -
re=ra(—G~+l)+r“E:ra(ks+l)+rus (2)

where s = P/G = the premiums-to-equity (or premiums-to-surplus) ratio, and
k = R/P = the liabilities-to-premiums ratio ( funds generating factor).
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Equation (2) indicates that the rate of return on equity for an insurer is generated by
both financial leverage (R/G + 1) and insurance leverage (P/G). The leverage factor
for investment income is a function of the premium-to-surplus ratio and the funds
generating factor. The latter approximates the average time between the policy isgye
and claims payment dates. The underwriting return is leveraged by the premium-to-
surplus ratio. Taking expectations in (2), one obtains the insurer’s expected return op
equity.

Equation (2) is essentially an accounting model. The model is given economic
content by assuming that the equilibrium expected return on the insurer’s equity is
determined by the CAPM. The CAPM formula for the expected return on the insurer’
stock 1s

E(fe):r/'+Be[E(Fnr)_r/'] (3)

where E(r,) = expected return on the insurer’s equity capital,
B. = the insurer’s equity beta coefficient = Cov(r,, 7,,)/Var(s,,),
E(r,) = expected return on the market portfolio, and
ry = the risk-free rate of interest.

The insurance CAPM is obtained by equating the CAPM rate of return on the insurer’s
equity with the expected return given by equation (2) and solving for the expected
underwriting profit.’ The result is:

E(Fu)Z“k’f/'*'Bu[E(’:m)—”_/'] 4)

where B, = Cov(r,, 7,)/Var(r, ) = the beta of underwriting profits.

The insurer must earn (in expectation) the return E(#,) on underwriting in order
to avoid penalizing equity (if the return is too low) or charging policyholders too much
(if the return is too high). The first term in equation (4), —k r, represents an interest
credit for the use of policyholder funds. The second component of E(#,) is the insurer’s
reward for risk-bearing: the underwriting beta multiplied by the market risk premium.
The risk premium reflects only systematic risk, i.e., policies are treated as free of
default risk.

Several limitations of the insurance CAPM have motivated researchers to seek
more realistic models. One problem is the use of the funds generating factor (k) to
represent the payout tail. Myers and Cohn (1987) argue that k is only an approxima-
tion of the discounted cash flow (DCF) approach. A second limitation is that the model
ignores default risk. As a practical matter, errors in estimating underwriting betas

° The derivation also uses the CAPM pricing relationship for the insurer’s expected asset return, E(7.),
ie., E(r,) = ry+ BJE(r,) — ] as well as the relationship B, = B,(ks + 1) + B,s.
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can be significant (Cummins and Harrington 1985). A final serious limitation is that
most recent studies have shown that security returns are related to other factors in
addition to the CAPM beta coefficient. A more modern version of the insurance
CAPM could easily be developed that incorporate multi-factor asset pricing models.
Most of the models discussed below deal with one or more of the limitations of the

CAPM.

19.4 DISCRETE TIME DISCOUNTED CASH FLOW (DCF) MODELS

paralleling corporate finance, DCF models for insurance pricing have been developed
based on the net present value (NPV) and the internal rate of return (IRR) approaches.
The NPV approach was applied originally by Myers and Cohn (1987) and extended
by Cummins (1990) and Taylor (1994). The NPV model is an application of adjusted
present value (APV) method, which requires each cash flow to be discounted at its
own risk-adjusted discount rate (RADR) (see Brealey and Myers 1996). The IRR
approach was originally developed by the National Council on Compensation Insur-
ance (NCCI) and is further discussed in Taylor (1994).° In this section we provide a
general discussion of the DCF approach to insurance pricing using notation taken
from Taylor (1994).” Taylor’s model is more rigorously developed than earlier models,
and he explicitly derives the conditions under which the NPV and IRR models give

the same results.
We begin by defining some additional notation. Specifically, let

P = the premium paid by policyholders for insurance coverage,

ua, = the proportion of the premium paid at time ¢,

L = the total amount of losses under the policy,

¢, = the proportion of losses paid at time ¢,

L, = ¢,L = the amount of the loss payment at time ¢,
E(r) = r;+ BE(F,) — r] = the expected value of the loss discount rate 7,
E(r,)=r;+ BJE(F,) — r/ = the expected return on the insurer’s invested assets,

B. = Cov(F,, F,,)/Var(r,,) = the beta coefficient for cash flow x (x = 1, a),

G, = the insurer’s equity capital at time t, and

T = tax rate for investment and underwriting income.®

® Of course, the internal rate of return model in insurance is subject to the same well-known pitfalls that
have been identified in corporate finance more generally. See, for example, Brealy and Myers (1996).
However, as Brealy and Myers point out, “used properly, it gives the same answer” as the net present value
(NPV) method (Brealy and Myers, p- 85).

" Taylor (1994) provides the sct of conditions under which the net present value model and the internal
rate of return models will yield identical premia. Our discussion is a simplified version of his model. The
reasder is referred to the original paper for more details.

Although we believe that our modeling of income taxes is reasonably generic, the models would have
to be modified for use in Jjurisdictions that have other types of tax formulas.
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As above, tildes indicate random variables. The insurer is assumed to issue policies

at time 0. In general, premiums are received at times {0, 1,..., T - 1} and losses
are paid at times {1, 2, ..., T}, where T'is the last loss payment date. We assume that
¢,>0atall imes {1, 2,..., T}, but premium payments may be zero at some poss;-

ble premium payment dates. An important special case is where all premiums are paid
at time zero, i.e., ¢, = 0, 1 # 0. Expenses (other than loss payments) are assumed to
be zero. The asset and liability discount rates, the risk-free rate, the expected returp
on the market portfolio, and the beta coefficients are all assumed to be constant over
the payout period. Insurer underwriting profits and investment income are taxed at the
constant rate T.

An important feature of the discounted cash flow approach to insurance pricing
is the concept of the surplus flow. The insurer is assumed to commit equity capital
(surplus) to the enterprise at time 0, and the capital is assumed to flow back to the
insurer over the loss payment period. A specific pattern of surplus flow is required in
order for the net present value and IRR methods to yield identical premiums. Myers
and Cohn assumed that surplus is released as losses are paid. However, Taylor (1994)
shows that their assumption will not lead to equivalency of the NPV and IRR
premiums. Taylor shows instead that the surplus must be released in proportion to
reductions in reserves. We return to this point below.

The insurer’s market value balance sheet consists of the market value of its assets
on one side and the market value of its debt and equity on the other. Debt capital con-
sists of loss reserves, 1.e., no bonds or other types of non-insurance debt capital are
used. The market value of labilities can be defined as:

[ oLd+v,) P }
R,m — ! _ — R,'nl _ R[mp 5
2{:[1+E(f’1)]’ [H'V/']H ©)

t=]

where R = the market value of reserves at time t,

v, = loading factor applied to expected costs of period t in their contribution
to loss reserves, and
R}, R = the loss and premium components, respectively, of equation (5).

The factor v, reflects loadings that are held in reserves until realization at time ¢. The
loadings are needed to pay the taxes on underwriting and investment income
(see below). The premium component R;” represents a receivables account and could
be equivalently treated as an asset item. The leverage factor can be defined as 6;' =
R'"G,t=0,1,..., T

Taylor (1994) derives the following formula for the cash flows to/from the

insurer’s owners:

F =G, -G)+01-0I], (6)
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where ﬁ, = net cash flow to (from) owners in period t. I'l, = the insurer’s profit at time

¢, defined as follows:”

+Vr—’_[E(’7a)—r_/'] +z

R™ L (R™ —P.) . }
G,_.l Gfﬁl Gl~l

i, =G,_l(l—r)[E(fa)+[E(fa)—E(fl )
(7)

The profit is after-tax and has five components, corresponding to the five terms inside
the brackets in equation (7). The first, E(r,), corresponds to the investment income
earned on the insurer’s equity. The second, equal to [E(r,) — E(r))] leveraged by
(6,..) "', reflects investment income on reserves less the rate of return credit needed to
write up discounted reserves for an additional period as they approach maturity, the
latter being a deduction in determining taxable income (Cummins 1990). The third,
involving v,, represents the release to profits of the loading margin in the loss reserve.
The fourth term represents the reduction in income attributable to premiums not yet
received by the insurer; and the fifth term, z,,, is a mean-zero random variable to
capture deviations of losses and investment income from their expected values.

The insurer’s return on equity (ROE) in period t can be obtained by dividing
through equation (6) by G,,. Because we have assumed no changes in the under-
lying variables such as expected investment returns and taxes, the expected return on
equity should be constant over the entire runoff period. Thus, it is of interest to inquire
about the conditions that will lead to a constant ROE. Using equations (6) and
(7), the CAPM formulas for E(r,) and E(r)), and the definition of 6, ROE can be
written as

mp
: =<1_T>{E(fa)+w<fa>— =Ly e +2,J ®)
Ba - BI Rtrfl Gr~l

Considering the second term inside of the brackets, involving (6,._,)”', it is clear

that this term will be constant if 6, , = 0, V ¢, where 0 is a constant, and the term

involving R and R} is constant. An important special case where this will occur is

when all premiums are received at time zero. Otherwise, the condition imposes a

constraint on the ratio of the reserve for deferred premiums to the reserve for unpaid
losses.

In the no-tax case where v, = 0 V ¢, the v, term in equation (8) vanishes, so we
do not need to worry about this term creating non-constant ROE. When v, # 0, the
condition that the v, term in (8) must satisfy in order for ROE to be constant is the
following:

L ot

v, :""—_—ROE 9
R™ 1-1 ©)

° The profit is the amount that must be earned in order for the insurer to earn its cost of capital on the
policy. We are not suggesting that monopoly rents play a role in this model.
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where ROE = the constant value for ROE being sought in the analysis. Because the
right hand side of equation (9) is a constant, this condition implies that the emergence
of profits should vary inversely with the ratio L,/R, i.e., profit emerges proportion-
ately to the ratio of paid losses to the (present valued) loss reserve. This differs
significantly from the approach in Myers and Cohn (1987), who assume that
“underwriting profits are accrued as losses are paid” (p. 68, emphasis added). Taylor’s
result in equation (9) shows that the MC assumption about the emergence of profit
will not lead to ROE being constant over time, even when the underlying parameters
are constant.

We are now ready to compare the IRR and NPV models. Consider first the
IRR model. This model specifies that the premium P is the solution of the following

equation:
i E(F)
1+ EG)T

where F, is given by equation (6). It is convenient in discussing the method to assume
that all premiums are paid at time zero. Then equations (8) and (9) imply that

(10)

EG) = EG)+EG) - EGIO™ = t[EG)+[EG) ~ EGIB™]+0 -1, EL— (11)
t—1
But by equation (10) the last two terms in (11) sum to zero, so E(7,) = E(7,) + [E(F,)
— E(r))]07', where 87" is the constant ratio of the present value of unpaid losses to
capital. Therefore, under these conditions we have a constant ROE.

This result has several important implications. First, the constant ROE generated
by the model is the required rate of return implied by the CAPM, which can be rewrit-
ten as E(r,) = E(r,)(1 + R™/G) - E(F)) (R™/G), where R"/G = 6" = the ratio of the
present value of reserves to equity capital, which is constant for all t. Thus, the insurer
earns a leveraged return on assets at rate £(r,) and pays for the use of policyholder
funds at the rate E(r;), where both E(F,) and E(F) are determined by the CAPM.
Second, the profit loadings (v,) emerge at exactly the time and amount needed to offset
the income tax on the ROE, so that the insurer earns the pre-tax ROE. The policy-
holder pays the firm’s income tax in accordance with the argument that the owners
will not commit capital to the insurer if it is subjected to another layer of taxation
because the owners have the option of investing directly in the capital markets. And,
third, like the insurance CAPM, the model does not recognize insolvency risk. Thus,
0 is indeterminate, and there is nothing explicitly in the model to prevent the insurer
from infinitely leveraging the firm. Thus, the model incorporates the implicit assump-
tion that market discipline or regulation prevent infinite leveraging.

The fourth implication provides a link between the IRR and the MC net present
value models. This argument is a bit more subtle and the reader is referred to Taylor
(1994) for a rigorous proof. However, the intuition is that the equation defining the
IRR (equation (10)) implies that no profit emerges at time zero. This in turn implies
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that R = 0 in equation (5) and thus that the premium satisfies the following
equation:

T T (1+ ,
D D el ) (12)

,1(1+r, A+ EG)

If v, is zero for all ¢, equation (12) is exactly the Myers-Cohn model for the case of
no taxes.

To produce a constant CAPM return on equity, one could calculate premiums
using the IRR model in equation (12). Alternatively, we can restate the MC model
using the surplus release pattern postulated by Taylor. To do this, we first note that
the APV approach requires that the insurer’s tax liability be broken down into its
components, with each component discounted at the appropriate rate. The insurer’s
expected tax liability can be disaggregated as follows:

Ta-xt = T{E(fa )[szl + Rt'zll - (Rr’?lj - Pz—l)] - E(F'l )Rt”dl + rf (Rmp - Pr—l )} (13)

The first expression in equation (13), equal to the expected investment return times
the bracketed expression, is the investment return on the insurer’s assets at the start
of the period, where assets (4,.,) equal equity (G, ) plus reserves (R™ ~ R™) plus
premiums received (P,_,). The second term (-E(7;) R™) is a deduction for losses
paid and for the write-up of the remaining loss reserve to reflect the reduced time to
maturity. The third component is the interest write up to accrue the premium account
towards maturity, i.e., a financing charge for unpaid premiums.

The present value of the tax components is added to the present value of losses
to obtain the NPV premium. To obtain the premium, it is necessary to specify a RADR
for each component of the tax. For the last term, the answer is obvious: 7R/ —
P,.)) is a riskless flow and therefore is discounted at the risk free rate, ». For the first
term, which is a risky investment flow, determined by the risky rate of return 7, the
answer is not so obvious. However, it turns out that this flow as well is discounted at
the risk free rate. This result is known as the Myers’ theorem, developed by Myers
(1984) and proved more rigorously in Derrig (1994) and Taylor (1994).

The Myers’ theorem can be demonstrated easily. Assume an investment of 1 at
time 0 in the risky asset. The return on the asset, which is unknown at time 0, will be
¥.. The investor will receive this risky return at time 1 and will pay a tax of T r,. The
question is: what is the present value at time 0 of this tax flow? The result is obtained
by observing that the investor is able to deduct the amount of the initial investment
(i.e., 1) before paying the tax. Although the investment return is risky, the deduction
is not.

We are seeking the following present value:

PV(Tax) =PV(tr,) =1PV(1,)
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However, we also recognize that the investor will have both the principal and interegt
at time 1, i.e., (I +r,), and can deduct 1 before paying the tax. Therefore, we cap
write

PV(Tax)=tPVI[(+F,)-1]

But we have assumed that capital markets are efficient, so the present value of
the risky amount (1 + r,) is 1, i.e., the appropriate discount factor for this term ig
(1 + 7,). The deduction of 1 is riskless and thus is discounted at the risk free rate.
Therefore, we have

PV(Tax)=tPVIU+r) - =1t1-1/U+r )] =1r /(1+r)

that is, the present value of the tax on a risky investment of §1 is the risk-free rate
times the tax rate, discounted at the risk-free rate.

The only component for which we still need a discount rate is the loss deduction.
The loss deduction depends on risky losses so that the appropriate discount rate is
E(7)). Consequently, the revised form of the Myers-Cohn model, which we term the
Myers-Cohn-Taylor (MCT) net present value model, is given by:

! T T ‘ ml T - i
ZPG, :ZL ¢ +T[2 Vf/(Ar—l‘FR,Al)_Z E@)R™ } (14)

=0 = N+EG)I o (+r) o L+ EG)T

Premiums based on this model will generate a constant (expected) cost of capital
throughout the runoff period for the policies being priced, and it will give the same
premium as the IRR model.

Although the discrete time models we have discussed here are useful and practi-
cal financial pricing models, they are not without limitations. E.g., multi-factor models
that price various sources of risk should be used instead of the CAPM in discounting
risky cash flows (see Cochrane 1999). Research identifying the sources of priced risk
in insurance markets would be an important advance in this field.

Recent work in the theory of risk management also suggest that the models
presented here may be in need of further development. Because of various capital
market imperfections, the cost of raising capital external to the firm will be more
costly than capital generated from internal sources (Froot, Scharfstein, and Stein
1993). Thus, firms have an incentive to manage risk at the individual firm level to
decrease the likelihood of having to raise costly external capital. Froot and Stein
(1998) have developed a capital budgeting model that allows for the possibility that
external capital is more costly than internal capital. They argue that the discount rate
on lines of business which co-vary positively with overall firm capital levels should
have higher discount rates than lines of business which co-vary negatively. Their work
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suggests that in the presence of financing imperfecltior.)s, the optimal dis;ount rate \jvill
depend not only upon the economy-wide systematic risks, but will also include a firm
and line specific adjustment determined by how the losses underwritten on a partic-
Jlar line of business are expected to correlate with the internal capital levels of the
firm. Future research validating (or rejecting) this hypothesis would greatly increase
our understanding about how intermediaries price their products and also about the
sources of friction in insurance markets.

19.5 OPTION PRICING MODELS

Like options, insurance policies can be thought of as derivative financial assets (con-
tingent claims) with payments that depend upon changes in the value of other assets.
Payments under primary insurance policies are triggered by changes in the value of
insured assets, while reinsurance payments depend upon the experience of the primary
insurer. Thus, it is natural to consider option models for pricing insurance.

The basic paradigm for pricing derivatives is the no-arbitrage principle. No
arbitrage exists in perfect and frictionless markets if the payoffs on the derivative
security can be replicated using existing securities with known prices. The price of
the derivative is found by forming a portfolio of primitive securities whose payoffs
exactly replicate the payoffs on the derivative. Since the prices of the primitive secu-
rities are assumed to be known, the price of the derivative must be exactly equal to
the value of the replicating portfolio.

Financial economics theory has shown that when markets are complete and
arbitrage free there exists a pseudo-probability measure, known as the risk-neutral
measure, under which a// uncertain cash flow streams can be priced using the risk-
free rate of interest (Duffie 1996). The equal return feature is just a fiction, of course—
returns on most assets, including options, are not actually equal to the risk-free rate.
Rather, the risk neutral valuation technique prices securities as if returns were risk-
free. Thus, the price of any uncertain cash flow stream can be determined by taking
expectations of the future cash flows using the risk neutralized probability distribu-
tion and then discounting at the risk-free.

The discussion of option pricing models of insurance we present in this chapter
parallels the evolution of the literature in which the principles of no arbitrage
and risk-neutral valuation are standard assumptions. However, it should be noted
that the assumptions of no-arbitrage and completeness in insurance markets are
non-trivial as they imply there exists a sufficient number of linearly independent
financial instruments to hedge all risks and replicate the payoffs on any insurance
contract. This assumption is more realistic for some insurance products than for
others. For example, the valuation of crop insurance using no-arbitrage arguments
is relatively straightforward since the underlying risk (the commodity price) can
be replicated using the spot markets and existing traded securities such as futures
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and options. Identifying the set of securities which completes the market for other
insurance products is more difficult and suggests a possible limitation of this litera-
ture as well as offering opportunities for future research. For example, the literature
on incomplete markets has received little attention in the context of insurance
financial pricing.

19.5.1 Basic Option Models In Insurance

Single period option models provide some important insights into insurance pricing."
A simple example is the pricing of excess of loss reinsurance on a portfolio of primary
insurance policies which is sufficiently large and has loss severity sufficiently small
so that the evolution of claim costs can be approximated by a Brownian motion pro-
cess. Consider such an excess of loss reinsurance agreement in which the reinsurer
agrees to pay the losses of the primary insurer in the event these losses exceed a fixed
retention amount M up to a maximum limit of U. In this case, the insurance policy is
a call option spread, paying {Max[0, ¥ — M] — Max[0, Y — U]} at maturity, where
Y = losses. Under the appropriate conditions, the Black-Scholes approach leads to
the following formula for the reinsurance premium:

1y [ I_U_g] 15
o dX +[M - U] I—N( - ) (15)

Pe=e [ (X - M)
where [ = r;— ¢%/2 and N(-) is the standard normal distribution function.
Another application of option modeling in insurance is to analyze insolvency risk.
This application utilizes the put-call parity formula:

A=C(4,L,1)+[Le™ — P(4,L,7)] (16)

where 4 = the value of firm assets,
L = the value of firm liabilities,
C(4, L, T) = a call option on asset 4, with striking price L, and time to maturity T,
and
P(A, L, 1) = a put option on asset 4, with striking price L and time to maturity T.

The options are assumed to be European options, implying that they can only be
exercised at the maturity date. The option model of the firm expresses the ownership
interest as the value of the call option because the owners have the right to receive
the residual value of the firm at the expiration date. If 4 > L at that date, the owners
pay off the liabilities and receive the amount 4 — L. If 4 < L, the owners default,

' Relatively early articles using single period option models to study insurance problems include Merton
(1978), Doherty and Garven (1986) and Cummins (1988).
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turning the firms assets over to the debt holders. The value of the policyholders’ inter-
est in the firm (i.e., the fair value of the insurance at any time prior to the option exer-
cise data) is given by the bracketed expression in (16), the riskless present value of
liabilities minus the put value. The put represents a discount in the price of insurance
to reflect the expected value of the owners’ option to default if 4 < L and is called the
insolvency put.'' Thus, the fair price of insurance is the riskless present value of losses
less the insolvency put.

Basic option models have some limitations that restrict their applicability to many
real world insurance problems.'? Three examples are: (1) The models are restricted to
a single payoff, even though most real-world property-lability policies have multiple
cash flows. (2) There i1s only one class of liabilities, whereas most insurers write
multiple lines of insurance. And (3) they require that the optioned variable be con-
tinuous. Thus, discrete jumps in loss values are ruled out. To relax the multiple period
assumption, it would be possible to adapt other types of financial models such as the
compound options model discussed in Geske (1977, 1979) or perhaps a coupon bond
model. In the following sections, we discuss some attempts to generalize the models
to incorporate multiple classes of liabilities and jump processes.

19.5.2 A Multi-Class Option Model

Because most insurers are multiple-line operations, it is of interest to extend the
basic insurance option model to the case of multiple liabilities (Cummins and Danzon
1997, Phillips, Cummins, and Allen 1998). To conserve notation, the model is derived
with two liability classes. Assume that insurer assets and liabilities follow diffusion
processes:

dA = H4Adt + GAAdZA
dLl = uL|L1dt + GLIL‘dZLl (17)
sz = uL2L2dt + GLZLZdZLz

where 4, L,, L, = market values of assets and liabilities (classes 1 and 2),
Wy, 04 = drift and diffusion parameters for assets,

"' Cummins (1988) uses the put-call parity relationship to obtain the premium for guaranty insurance
as the value of the put, P(4, L, 7).

'z Nevertheless, the simple option models may perform better than might be expected. D’Arcy and
Garven (1990) tested the performance of several financial pricing models in explaining actual underwrit-
ing profit margins over a sixty year period ending in 1985. They found that the most accurate models were
basic option pricing models (Doherty and Garven 1986, Cummins 1988) and an industry rule of thumb
model, the total return model. The insurance CAPM and the NPV models did not perform as well as the
option and total return models.
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W, O, = drift and diffusion parameters for liability class i, i = 1, 2. and
dz,. dz;y, dz, = increments of the Brownian motion processes for the asset and
liability classes 1 and 2.

The Brownian processes are related as follows: dz, dz;y = p ., dt, dz, d=, = p ,» dt. dz,,
dz;» = py, dt, where p;, [ = 1,2, = instantaneous correlation coefficients between the
Brownian processes for assets and liability classes 1 and 2, respectively, and p,, = the
instantaneous correlation coefficient for liability classes 1 and 2.

Both assets and liabilities are assumed to be priced according to an asset pricing
model. such as the inter-temporal capital asset pricing model (ICAPM), implying thg
following return relationships:

W, = r,+ m,, for assets, and
W, = r;; + 1y, for hability classes i =1, 2.

where r;; = the inflation rate in liability class /, and

U

= the market risk premium for asset j = 4, L,, L,.

The Fisher relationship is assumed to hold so that , = r + r,, where r = the real rate
of interest and », = economy-wide rate of anticipated inflation. The economy-wide rate
of inflation will not in general equal the inflation rates on the two classes of insur-
ance liabilities. If assets (and liabilities) are priced according to the ICAPM, the risk
premium would be:"

TC‘/’ = pjm (G/ /Gm )[l"lm - r/]

where |, G, = the drift and diffusion parameters of the Brownian motion process for
the market portfolio, and
P, = the correlation coefficient between the Brownian motion process for
asset j and that for the market portfolio.

The value of an option on the two-liability insurance company can be written as P(4,
L,, L,, T), where T = time to expiration of the option. Differentiating P using Ito’s
lemma and invoking the ICAPM pricing relationships for assets and liabilities yields
the following differential equation:

1 1 1 )
Pk/ :r/'P4A+rL|PL|Ll +I’L2PL3L2 _Pt +50,24PAAA2 +_2—GZ|L%PL1L1 +56%2])L2/‘2L§

+ Py, AL G 4y + Py, ALG o + P 1,01, L L,y (18)

" Alternatively, the risk premium could be defined using the consumption CAPM (Breedon 1979). The
consumption CAPM assumes risk premia are related to the rate of return on aggregate real consumption
instead of assuming that asset risk premia are related to movements in securities markets. Empirical tests
of the consumption CAPM, however, suggest the model does no better explaining security returns than
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Risk and the drift parameters (i) have been eliminated by using the ICAPM and
taking expectations. This also could be done by using a hedging argument, provided
that appropriate hedging assets are available.
The next step is to use the homogeneity property of the option model to express
the model in terms of the asset-to-liability ratio x, the option value-to-liability ratio p
; — P/L, and the liability proportions w, = L,/L and w> = L,/L, where x = 4/L and
é I = L, + L,. The result is the following differential equation:

1, )
pl',, = XPJ‘n — Pt +‘2_.\7~[)‘._\G,_, (19)
where 7, =Fp— Wiryy — Wokpo,
0. =03+ WO, + w301, — 2w,0, — 2w,0.; + 2w w,0 ),
o; = the diffusion parameter for process j (/ = 4 = assets, j = L1, 12 =
liability classes 1 and 2), and
o, = the covariance parameter for processes j and k, 4 = assets, 1,2 =
classes 1 and 2.

Equation (19) is the standard Black-Scholes differential equation, where the optioned
asset is the asset-to-liability ratio (x).

This model can be used to price various contingent claims on the insurer by
solving the equation subject to the appropriate boundary conditions. For example, the
call option c(x, I, T) = the value of owners’ equity, is the solution to equation (19)
with boundary condition ¢(x, 1, 0) = Max(x — 1, 0). The put option g(x, 1, T) = the
guaranty fund premium is the solution of (19) with boundary condition g(x, 1, 0) =
Max(1 — x, 0). The value of policy liabilities 1s obtained from the parity relationship
as b(x, 1, T) = exp(—r1) — g(x, 1, 7). The striking price in each case is equal to 1 because
of the normalization of asset and option values by L. The option values are given by
the usual Black-Scholes call and put option formulas (see Ingersoll (1987))."

19.53  Implications of the Multi-Class Model

A number of interesting implications about insurance markets can be gleaned from
equation (19). For example, the equation reveals that a portfolio effect exists for insur-
ers that write multiple policies or multiple lines. To be specific, assume the existence
of two insurers, with assets 4,, liabilities L,, and risk parameters G,, i = 1, 2. The put
values for the two insurers separately are g(4,, L;, 1), i = 1, 2. Now suppose that the
two companies are merged, with no change in the asset or liability parameters. Assum-
ing there is no correlation between the asset and liability processes and the correla-

does the traditional CAPM (Breeden, Gibbons, and Litzenberger 1989). Thus, the value of using the
consumption CAPM in insurance pricing is an open question.
** Using the homogeneity property, the options on x can be rescaled in dollars by multiplying by L.
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tion coefficient between the lability processes py; is not equal to one, it ig easy to
show the put value for the merged insurer, g(4; + 4,, L, + L,, T) must be less than or
equal to the put values of the two insurers separately owing to the convexity of Eurg-
pean puts (Merton 1973). Intuitively, the portfolio of puts from the separate insurers
is worth at least as much as the put on the portfolio because situations exist where
one of the individual puts finishes in the money but the portfolio does not. Thus, equa-
tion (19) implies that value is created by pooling different classes of risks in 3 port-
folio and multiple line insurers have an advantage over mono-line insurers in that they
can offer equally safe insurance with less capital as long as the liability processes are
not perfectly correlated

The multi-class option model has also been used by Cummins and Danzon (1997)
to gain some insights into the supply of insurance. They consider a company which
has an existing portfolio of policies L, with one year until maturity. Its assets are A,
and its existing portfolio will pay no additional premiums. The company has the
opportunity to write a new block of policies, L,. To write the new policies, it may have
to issue new equity. The company is seeking a strategy for issuing new equity and
pricing the new policies.

Assuming that markets are efficient and that the policyholders know the charac-
teristics of insurers, pricing will depend upon the liquidation rule, i.e., the rule gov-
erning the disposition of the company’s assets in the event of insolvency. Assume that
the liquidation rule compensates policyholders in proportion to the nominal value of
their claims against the company, so that policy class i obtains proportion w; = L/(L,
+ L,) of assets." Then, the fair premium for the new policyholders is: L, [exp(-rT) —
wags(x, 1)}, where gg(x, T) = the put option on the company after the new policies
and new equity are issued and x = (4, + 4,)/(L, + L,).

Because the pricing rule of the new policyholders is satisfied for a wide range of
x values, the amount of the equity issue is indeterminate unless additional structure
1s imposed on the problem. For example, equity owners could gain by issuing the new
policies and obtaining little or no new equity. This would expropriate value from the
existing (class 1) policyholders without affecting the new policyholders, who pay the
fair value for their coverage. In a competitive, efficient market, it is unlikely that
the equity owners would be able to gain by expropriation. Expropriating value from
the old policyholders would adversely affect the firm’s reputation and its future cash
flows. For example, the new policyholders might not be willing to pay the “fair value”
if it appears that the owners have a history of expropriating wealth from policyhold-
ers by changing the capital structure or risk characteristics of the firm. \

Assume that the firm’s objective is for the value of equity after the equity/policy
issue to be at least as large as the sum of its equity before the equity/policy issue and
the amount of new capital raised (E), i.e.,

'S This is consistent with the way insurance insolvencies are handled in practice (National Association.
of Insurance Commissioners 1993).
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C4+4,L+L,,1)2C4,L,T)+E (20a)
Substituting for the value of the call options on the both sides of the inequality yields:

A+A—(Li+Lye " +(Li+L)px, )24 —-Le " +Lipkx,D+E
A: - L:[eAn —p(x,’t)]ﬂ-L;[p(x,‘E)—M (,’Cl,‘C)]Z E (20b)

Focusing on the second line in (20b), it should be clear that the premium of the new
policyholders is (—1 times) the first bracketed expression on the left hand side of the
inequality sign. The difference between 4, and the premium must equal the new equity
(E) since there is no other source of funds. Thus, the condition for writing the
policies reduces to the following:

plx,1;0%) = plx1,1;,67) 20 1)

where 61, 6° = the risk parameters of the firm before and after the policy issue.

In general, if the firm is safer after the new policies are issued, i.e., if p(x, T, 6°)
< p(x), T, 61), the stockholders will lose money on the transaction.'® They will gain
if the firm is more risky following the policy issue, so that p(x, T, 6°) > p(x,, T, G7).
Expression (20a) is satisfied as an equality only if the value of the put (per dollar of
liabilities) is the same before and after the policy issue.

Unless the new policies are unusually risky or highly correlated with the old poli-
cies, the risk parameter of the firm after the policies are issued will be less than it was
before due to the diversification effect. Since dp(x, 1)/0G > 0 and dp(x, T)/dx < 0, this
implies that the firm can operate at a lower leverage ratio without expropriating value
from the old policyholders.

This model may help to explain market behavior observed during insurance price
and availability crises. For example, assume that the risk of policy class 2 is suffi-
ciently high that 6 > 6{. Then, in order to avoid expropriation, the leverage ratio must
increase, leading to higher costs for the new policies. If there is an optimal leverage
ratio (or range) and unexpected losses reduce the ratio to a suboptimal level, it may
be difficult to restore the optimal ratio immediately. Expressions (20a), (20b), and
(21) imply that the firm cannot raise the ratio without incurring a capital loss unless
it charges more than the optimal premium to the new policyholders. Writing more
business at a suboptimal leverage ratio may affect the reputation of the firm and there-
fore dampen future cash flows. Thus, the firm would prefer to write business at higher-
than-market prices even if this means reducing its volume."

'* The put value is directly related to risk, i.e., dp/do > 0. The comparative statics of the Black-Scholes
model are discussed in Ingersoll (1987).

"7 Some restriction on entry is necessary in order for firms to restore optimal leverage ratios by writing
at higher-than-fair prices. New entry may be difficult in lines such as liability insurance due to informa-
tion asymmetries, regulation, and other market imperfections.
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The multi-class options model also has implications for the price of insurance.
Consistent with the basic options model, the multi-class model also suggests that thé
price will be inversely related to the value of the insolvency put, ie.. safer firms
| should command higher prices. Empirical evidence that insurance prices are inversely
a related to the expected policyholder costs of insolvency is provided by Sommer
(1332), Cummins and Danzon (1997), and Phillips, Cummins, and Allen (PCA)
(1 ).

19.5.4 Option Models and the Allocation of Equity Capital

A recent topic that has been addressed by several papers in the actuarial and finap.
cial literature is the allocation of equity capital (surplus) by line of business (e.g.,
Kneuer 1987, Butsic 1999, Merton and Perold 1993, Cummins, Phillips, and Allen
1998, Perold 1999, Myers and Read 1999, Cummins 2000). The usual objective in
capital allocation is to assess a cost of capital charge to each line based upon the
amount of capital assigned to the line and the riskiness of the line. The allocation of
capital is motivated by the observation that holding capital in a financial institution ig
costly due to regulation, taxation, and agency costs. The general argument is that lines
which consume more capital should bear a higher proportion of the firm’s overall cost -
of capital than lines which consume less capital. Capital consumption is determined [
by the impact of the line of business on the insurer’s insolvency put option. :

In capital allocation, a typical objective is to attain a specified target level of the =~
expected policyholder deficit (EPD) or insolvency put option. E.g., a firm may want @
to have an insolvency put value of no more than 5 percent of liabilities. The alloca- .
tion of capital among lines in the multiple line firm 1s problematical because writing
multiple lines leads to diversification effects whereby the amount of capital needed to
attain the EPD target in the multiple line firm will be less than the sum of the capital
needed to attain the target if each line were operated as a separate or “stand-alone™
firm. The impact of diversification is non-linear in the option modeling context, and
it is not obvious how to allocate the diversification eftect. e

Merton and Perold (1999) and Perold (1999) propose a marginal approach to’
allocating capital. To facilitate the discussion of their methodology, we consider a firm
with three lines of business—labeled lines 1, 2, and 3. We assume that the multi-class
option model presented in the preceding section is used in conducting the capital allo-
cation. In this context, the M-P method of capital allocation is conducted in two steps:
(1) Calculate the equity capital required to obtain the EPD target by firms that combine
two of the businesses. There are three possible combinations: businesses 1&2, busi-
nesses 1&3, and businesses 2&3. (2) Calculate the marginal capital required to attain
the target when the excluded business is added to the two-business firms, i.e., the mar-
ginal capital required if a firm consisting of two businesses were to add the third busi-
ness. The capital allocated to a given business is equal to the marginal capital required
when it is added to the appropriate two-business firm. Because the calculation is made
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for each two firm combination, the method provides a unique capital allocation for
each of the business lines comprising the firm.'

Merton and Perold (1993) argue that capital allocations based on stand-alone
capital are likely to lead to incorrect decisions about the projects undertaken by the
firm and the performance evaluation of lines of business. They also argue that allo-
cating all capital among lines may lead to the rejection of positive net present value
projects. Their view is that the unallocated capital should be held at the “corporate”
level rather than being charged to any specific division.

An alternative to the Merton and Perold approach which does allocate 100 per-
cent of capital has been proposed by Myers and Read (M-R) (1999). They also use
an option pricing model to allocate capital but reach different conclusions from
Merton and Perold. Whereas Merton and Perold allocate capital at the margin by
adding entire lines or division to the firm (a macro marginal allocation), Myers and
Read allocate capital by determining the effect of very small changes in loss liabili-
ties for each line of business (a micro marginal allocation). Myers and Read allocate
capital by differentiating the insolvency put with respect to the amount of liabilities
resulting from each line of business, essentially deriving the effect on the put of infin-
itesimal changes in the liabilities from each line. They argue that their approach leads
to a unique allocation of the firm’s entire capital across its lines of business.

Examples presented in Cummins (2000) indicate that the amounts of capital allo-
cated to each line of business can differ substantially between the Merton-Perold and
Myers-Read methods. Thus, the two methods will not yield the same pricing and
project decisions. The Myers-Read method has considerable appeal because it avoids
the problem of how to deal with the unaliocated capital under the Merton-Perold
approach. In addition, most decision making regarding pricing and underwriting is
marginal in the sense of Myers and Read, 1.e., typically involving very small changes
to an existing portfolio. However, more research is needed to determine which model
is more consistent with value maximization.

A different perspective on the multiple line firm problem is provided by Phiilips,
Cummins, and Allen (PCA) (1998). Unlike Merton-Perold and Myers-Read, they
assume that no friction costs are present in the market for insurance. They derive the
following formula for the market value of line i’s claim on the insurer:

_ —(r =1y, )T _
P=Le " wy, B(A4,L,7) (22)
where P, = the market value of line i’s claim on the firm,
L; = the nominal losses owed to line i,

vy, r1; = the risk-free rate and the liability inflation rate of line i,

"™ The order in which the businesses are combined into firms does not matter because all three two-
business combinations are used, 1.¢., the allocated capital of each business is obtained on the assumption
that two of the businesses have already been combined.
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w, = L,-/L,
A. L = total assets and total liabilities of the nsurer, and
B(A, L, t) = the insurer’s overall insolvency put.

Or, in other words, the market value of line i’s claim on the firm at time T before the
policy expiration date is equal to the nominal expected value of its loss liabilities at
the expiration date L™, discounted at the risk-free rate, minus the line’s share of
the firm’s overall insolvency put option. Thus, the discount for insolvency risk in line
i’s claim on the firm depends upon the overall insolvency risk of the firm and not just
on the line-specific levels of risk. Intuitively, this is because each line of business has
access to the firm’s entire capital in the event that losses are larger than expected.

One of the implications of the surplus allocation result in the PCA analysis is that
the market value of the line-specific claims on the insurer should be equal after con-
trolling for differences in line-specific growth rates and the overall risk level of the
firm, regardless of differences in the risk characteristics of the individual lines of busi-
ness. PCA test their theoretical prediction by comparing a measure of price for short-
tail lines to the same measure for long-tail lines and show that prices are consistent
with the predictions, i.e., after controlling for the overall insolvency risk of the firm
and line-specific growth rates, there is no significant difference between the price
measures for the short and long-tail lines.

A linkage can be developed between the PCA and the Myers-Read models of
capital allocation in the presence of friction costs. That is, the price to be charged to
line  would be equal to the market value of line i’s claim on the firm from equation
(22) plus the costs of the marginal capital that must be added to the firm to maintain
a target insolvency put, where marginal capital is obtained using the formulas in Myers
and Reed (1999). Further theoretical and empirical exploration of this approach could
provide a new class of insurance option pricing models.

19.5.5 The Insurer as a Down-and-Out Option

One of the implications of the simple option model of the firm is that the equity owners
can gain at the expense of the debt holders by increasing the risk of the firm (the
derivative of a call option with respect to the risk parameter is positive). Neverthe-
less, in actual securities and insurance markets, stockholders usually do not exploit
this feature of the call option. One way to explain this is through reputational argu-
ments, as suggested above. Another approach is to examine penalties and restrictions
that might be imposed on firms adopting expropriative strategies.

One type of restriction that is often used in bond markets is the safety covenant.
For example, the bond agreement may specify that the firm will be reorganized if
its value ever drops to a specified level. Although insurance contracts usually do not
include safety covenants, regulation has a similar effect. Specifically, under the U.S.
risk-based capital system, regulators are required to seize an insurer if its equity capital
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falls below a specified level K > 0 (see Cummins, Harrington, and Niehaus 1994).
This regulatory “option” terminates the equity holders’ claim in the firm if the dif-
ference between assets and liabilities ever reaches the boundary. Because the chance
of reaching the boundary is an increasing function of risk, the risk-based capital
system changes equity owner incentives with regard to risk-taking.

Risk-based capital can be modeled using a type of option known as the down-
and-out option (see Merton 1973, Cox and Rubenstein 1985). Let W(A4, L, 1) equal
the value of a down-and-out call option on an insurer with assets 4 and face value of
liabilities L. The time-to-expiration of the option is T. Prior to T if the value of the
assets ever reaches the knock-out boundary K = b L exp(-11). the stockholders’ inter-
est in the firm is terminated and the assets revert to the debt holders, where » and N
are constants.

To analyze the insurance case, assume that 1} = 0. Then the knock-out boundary
is constant, and the value of the firm reverts to the debt holders if assets fall to b L.
Also assume that the call option has an infinite life, i.e., T = o.'” The formula for the
infinite down-and-out call 1s:

A —Zr, /o
WAL = A —bL(;L—) (23)

where o’ = the dispersion parameter of the insurer. Because the value of an infinite-
lived conventional call option equals the value of the assets (the value of an infinite-
lived conventional put is zero), equation (23) implies that the value of the firm’s debt
is D(A4, L) = bL(A/bL)™, where y = 2r,/c".

The effects of changes in risk on the equity and debt of the down-and-out firm
are as follows:

oW oD bL _%tf_') (24)
do? 9do? bLln( A )( c*

Expression (24) is < 0 if bL < 4. Thus, increases in risk reduce the equity holders’
share of the value of the firm and increase the debt holders’ share. Equity holders have
an incentive not to increase risk because this increases the chance that their share in
the firm will be forfeited to the debt holders due to the knock-out feature. This
provides a useful model of the value of the firm under solvency regulation.

Like the standard Black-Scholes model, the down-and-out option can be gener-
alized to multiple asset and liability classes. For one asset class and two types of
liabilities, the value of the down-and-out option is given by equation (23), with
_ dispersion parameter o7 (defined following equation (19)).

:fhese assumptions are used to simplify the discussion. A closed form solution exists for finite-lived
vi-and-out options with 1 > 0. See Cox and Rubenstein (1985, p. 410).
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If the liquidation rule allocates assets in proportion to nominal liabilities, the
analysis of the firm’s decision to accept new business is similar to the multi-variate
Black-Scholes analysis discussed above. The firm will issue new business provided
that the equity value of the firm after the policy (and stock) issue is greater than the
value of the firm before the issue plus the amount of new capital raised. The condi-
tion is expressed as follows:

;’;/(A] 'f‘Az,L! + Lz)_ M/(AI,L])E E

/
g

i ~bLz(%) _bL, [x Sl T s B

where x = (4, + A)(L, + L>),
x, = A,/L,,
o’ = dispersion parameter after the policy issue, and
o7 = dispersion parameter before the policy issue.

Since new debt holders will pay the fair value of their coverage, there is neither
a gain nor a loss in equity if the term in brackets in (25) is equal to zero. The dis-
persion of the firm typically will be lower following the policy issue. Thus, the firm
should be able to operate at a lower leverage ratio after issuing new policies. The
down-and-cut model provides an alternative options interpretation of the insurance
firm which may provide a better description of observed insurer behavior than the
Black-Scholes model.

19.6 PRICING CAT CALL SPREADS AND BONDS

A number of new financial instruments have been introduced recently to accomplish
the securitization of insurance risk. The securitization process involves the develop-
ment of financial instruments whose payoffs are triggered by losses from hurricanes,
earthquakes, oil spills and other contingent events traditionally financed through
insurance. The most prominent insurance derivatives are catastrophic risk (CAT) call
spreads and bonds, where the payoffs are triggered by losses from property catastro-
phes. CAT call spreads are option contracts that pay off on the basis of an industry
loss index, while the payoff on most CAT bonds is triggered by the losses of the spe-
cific insurer issuing the bonds.

CAT futures were first introduced by the Chicago Board of Trade (CBOT) in 1992,
call spreads were introduced in 1993, and a major design change was implemented
in 1995. We abstract from most of the institutional details of the CBOT contracts and
focus instead on the key mathematical features that enter into the pricing of this type
of contract. Define an industry loss index, I, which is based on the value of losses
from catastrophic events over a clearly defined period of time. For the CBOT
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contracts, the loss index i1s compiled by Property Claims Services (PCS), a statistical
agent sponsored by the insurance industry, based on surveys of insurers following
property catastrophes. The index is equal to the insured catastrophic property loss
divided by $100 million, e.g., a $2 billion event would have an index value of 20.
The CBOT securities are call spreads on the index, so that the payoff is defined as:
P = Max[0, I-M] — Max[0, /-U], where M = the lower strike price and U = the upper
strike price of the option. E.g., a 20/40 spread would be triggered by an industry-wide
loss of > $2 billion and pay a maximum of 20 points for losses >$4 billion, with each
point worth $200. The pricing of CBOT-type contracts has been investigated by
Cummins and Geman (1995). They model the stochastic process representing CAT
losses as having a continuous component, modeled as a geometric Brownian motion
process, and a discrete component based on a Poisson jump model. They do not find
a closed form expression for the option price but are able to price the contracts using
Monte Carlo simulations.

To develop a more general model of CAT options, it would be necessary to address
the problem of incomplete markets. Naik and Lee (1990) show that when jump risk
is systematic (i.e., correlated with the market portfolio), the market is incomplete.
Consequently, risk-neutral valuation techniques cannot be applied without imposing
additional restrictions such as constant jump magnitudes (as in Cummins and Geman
1995) and non-systematic jump risk (as in Merton 1978). If such restrictions are unre-
alistic, it is necessary to resort to equilibrium pricing, resulting in utility dependent
option values. Insurance pricing with jumps in the incomplete markets setting is an
important area for future research.”’

To price CAT bonds, we adopt Merton’s (1978) approach to the incomplete
markets problem, i.e., the assumption that catastrophic risk is non-systematic.”' We
again abstract from the institutional details and focus primarily on the mathematical
structure. CAT bonds are debt instruments issued by an insurer and sold to investors.
The investors contribute capital in exchange for the bonds. The capital is placed in
a single purpose reinsurer (SPR) that exists solely to handle the CAT bond issue. The
SPR is set up in the form of a trust that holds the proceeds of the bond issue. The
bonds are invested in safe securities such as Treasury bonds. Because of the forma-
tion of the trust and the investment of proceeds in low risk securities, the SPR is
virtually free of credit risk. The insurer agrees to pay interest on the bonds. How-
ever, repayment of principal is contingent on the insured event.”” If the contingent
event occurs, the bond covenant permits the insurer to withdraw funds from the trust

* Chang (1995) has developed an option pricing model incorporating jumps in both complete and
incomplete markets settings.

' Evidence that property catastrophe losses are not correlated with returns on the stock market is
provided in Litzenberger, Beaglehole, and Reynolds (1996) and Canter, Cole, and Sandor (1997).

** For example, the bond may call for full repayment of principal unless a hurricane occurs in a speci-
fied geographical region such as Florida that satisfies certain severity criteria such as the amount of insured
property loss and/or physical severity criteria such as the Saffir-Simpson rating of the storm.
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to pay losses arising from the event; and the bond holders forfeit some or all of
their principal.

Because of the assumption that CAT risk is uncorrelated with the stock market,
CAT bonds can be considered zero-beta securities. The zero-beta feature also sug-
gests a simple pricing model for these securities. Specifically, in asset pricing theory,
zero-beta securities should earn the risk-free rate. However, because there is some
probability that the principal will not be repaid, the bond coupon rate on these secu-
rities should be sufficient to deliver the risk-free rate to investors after taking into
account the potential loss of principal. Assuming a one-period bond, this suggests the
following pricing model:

P+r;)=Pl+rn —A) (26)

where P = the bond principal,
r. = the coupon rate on the bond, and
A = the expected loss of principal due to an insured event expressed as a pro-
portion of principal.

It is easy to see that the coupon rate should be: r, = r,+ A. Thus, to price the bond,
one needs to estimate the expected loss from the contingent event.

Cummins, Lewis, and Phillips (CLP) (1999) provide an estimate of A based upon
the frequency and severity of hurricanes and earthquakes using both historical loss
data provided by PCS and simulated losses from Risk Management Solutions (RMS),
a modeling firm specializing in the simulation of catastrophic events. They estimate
the expected loss for a contract covering the layer from $25 to $50 billion dollars in
total industry losses to range from less than 1 percent to 2.4 percent, depending on
the probability distributions selected to model the frequency and severity distributions
and the data source (PCS or RMS). Thus, a CAT bond covering losses in this layer
might be issued at the Treasury rate plus a maximum of 240 basis points. Actual CAT
bond issues have generally been sold at higher margins above the Treasury rate,
although the risk premia have declined over time as investors have become more
familiar with these bonds.

19.7 CONTINUOUS TIME DISCOUNTED CASH FLOW MODELS
19.7.1 Certainty Model

Continuous time models for insurance pricing have been developed by Kraus and Ross
(KR) (1982) and Cummins (1988). As an introduction, consider the Kraus-Ross
continuous time mode] under conditions of certainty.

To simplify the discussion, assume that the current value of losses is determined

.
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by a draw from a random process at time 0. Loss payments occur at instantaneous
rate 0, while loss inflation is at exponential rate p, and discounting is at rate ». The
differential equation for the rate of change in outstanding losses at time ¢, in the
absence of inflation, is: dC,/dt = —6C,. Solving this equation for C, yields the amount
of unpaid claims at any given time (the reserve): C, = . Thus, the assumption 1s
that the claims runoff follows an exponential decay process with average time to
payout = 1/6.

Considering inflation (1), the rate of claim outflow at any given time 1s: L, =0C,e™.
The premium is the present value of losses, obtained as follows:

(n~6—r, )1 . GC()

p= jo Le ™"t 'dr = jﬂ 0C,e' di 27)

In (27), © could be >, =, or < economy-wide inflation. The model also can be used
to estimate the market value of reserves, R:

4(9“/ ~7t)1 _ GL() e—(ewj —n)r

dt =
O+r, - (28)

R, = r 0L,e

19.7.2 Uncertainty Models

Kraus and Ross also introduce a continuous time model under uncertainty. This model
is based on arbitrage pricing theory (APT). The KR model allows for market-related
uncertainty in both frequency and severity.

The following differential equation governs the claims process: dC/dt = o, — 0C,
where o, = accident frequency. The frequency process affects the evolution of out-
standing claims for a period of length 7 (the policy period). After that point, no new
claims can be filed. During the entire period (0 to o) claims inflation takes place
according to the price index g, The parameters o, and g, are governed by the &
economic factors of arbitrage pricing theory. These factors are modeled as diffusion
processes:

dx,-= m,-x,dt + Gi.x,'dzi, i= 1, 2, ey k. (29)

The parameters are log-linear functions of the factors, e.g.:

I
log(q) = Y q; log(x) +1og(gy) (30)
i=l
where g, = the price level of the average claim at policy inception.
Arbitrage pricing theory implies that the value of outstanding claims at any time
t, V(x, C, t), where x is the vector consisting of the x,, is governed by the following
differential equation:
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V £ A :
E‘:fl-—}r[gg—g —F }dt = Zkio,[Cov(ﬂ,gﬁ)/Var(@):{m
V V ‘ - V o x; X;

i=

where A; = the market price of risk for factor i = (r,, — r)/c,, and

(1)

r, = the market return on a portfolio that is perfectly correlated with the ith

risk factor.

The premium formula is obtained by applying the multivariate version of Ito’s lemma
(see Ingersoll 1987) and then solving the resulting differential equation. The formula is:

P = ( 90(()(]0[40 ){1 —eiput :l
p+6 o

where p = r,— 1 - %, L0y,
Po =1 — Mg — X NG(g; + o),
n =X [.506°dq. — 1) + gm)],
M, =X [56°(a + giot + g, — 1) + (0, + g)m,].

(32)

The premium given by (32) is similar to the premium for the certainty case except
for the presence of the market risk loadings (A, terms) in the denominator. These load-
ings are the company’s reward for bearing systematic risk. The o, and g, are the “beta

coefficients” of the model.

For the company to receive a positive reward for risk bearing, the risk loading
term must be negative, i.e., losses must be negatively correlated with some of the
market factors such that the net loading is < 0. The model requires estimates of the
market prices of risk for the k risk factors as well as the beta coefficients for insur-
ance. This would be difficult given the available data. Like most other financial pricing
models for insurance, this model gives the price for an insurance policy that is free

of default risk.

A continuous time model that prices default risk has been developed by Cummins

(1988). Assets and liabilities follow geometric Brownian motion:

where o, 0, = asset and liability drift parameters,
G4, O, = asset and liability risk (diffusion) parameters,
A, L = stock of assets and liabilities,
0 = the claims runoff parameter, and

dz,(t), dz;(t) = possibly correlated standard Brownian motion processes.

(33)
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The asset and liability processes are related as follows: p,;, = Cow(dz,, dz)).

The model is more realistic than the standard options model since it does not
have a fixed expiration date but rather allows the liabilities to run off over an infinite
time horizon, i.e., it models liabilities as a perpetuity subject to exponential decay.”™
Cummins uses the model to obtain the market value of default risk, D(4, L). Using
Ito’s lemma to differentiate D and then using either a hedging argument or the ICAPM
to eliminate the risk terms, one obtains the confluent hypergeometric differential
equation. The solution is:

D(x) = ﬂg)—b“v"“e’h/"M(Z 2+a,b/x) 34
TR+ T (34)

where a = 2(r, + ©)/0, b=26/0, Q0 =6; + 6} — 2 6, 6, Py, and M = Kummer’s
function (see Abramowitz and Stegun 1972).

This perpetuity model has significant potential for pricing blocks of policies
subject to default risk. It poses easier estimation problems than the Kraus-Ross model
since one need only estimate the variance and covariance parameters of assets and
liabilities rather than betas and factor risk premia.

19.7.3 Pricing Multiple Claim Insurance Contracts

Shimko (1992) develops an equilibrium valuation model for insurance policies which
extends the prior literature in three important ways. First, his model explicitly
recognizes the non-linear payoff structures resulting from the deductibles and
maximum policy limits found in many insurance policies. Second, both the frequency
and severity of losses are allowed to vary systematically. By contrast, many of the
option pricing models of insurance assume the liabilities of the insurer evolve as
smooth geometric Brownian motion, which essentially combines these two features
into one process. Third, Shimko’s model allows for multiple claims over the lifetime
of the policy.

Shimko assumes the claim amount C, conditional upon a claim being filed, for
an individual will follow a geometric Brownian motion process:

dC,= a.Cdt + 0.CdZ,. (35)

To incorporate the deductible and policy limit provisions, the payoff to the policy-
holder conditional upon a claim being filed at time ¢ will equal

S, = min[max(C, - D,0), M| (36)

# A perpetual put option model incorporating jumps that also might be applicable to insurance pricing
has been developed by Gerber and Shiu (1998).
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where S, 1s the payoff, D is the deductible, and M is the policy limit. The arrival of
claims is modeled as a non-stationary Poisson process where the expected intensity
of claims arrival 1s a geometric diffusion process equal to

dh, = cu N dt + 6, AN dZ;, (37)

where the constant term o, measures the non-stochastic expected growth in claim fre-
quency over the time period while o, is the instantaneous volatility. The model allows
for correlation between the claim arrival and amount processes where dZ,,dZ;, = p ; dt
is the instantaneous correlation between C and A.

To solve for the value of the insurance policy, ¥, Shimko considers two cases. In
the first case he simplifies the problem and assumes the policy has a maximum indem-
nity payment M equal to positive infinity and a positive deductible D. Invoking the
ICAPM equilibrium pricing relationships discussed earlier, he finds a closed form
solution for the policy value V. The formula is quite complicated and therefore is not
presented here. However, there is an intuitive interpretation which is useful to discuss.

The value of the policy is given by

V(C, A, 1;D) =AW (C,t; D) (38)

where W represents the expected payout by the insurance company conditional on a
claim being filed by the policyholder and A is the expected number of claims. Shimko
shows that ¥ is equal to the fair value of the cash flows needed to replicate the cash
flows of the insurance contract. The replicating cash flows are as follows: (1) At the
beginning of the policy period, if the claim amount is greater than the deductible, the
insurer must purchase a risky perpetuity that pays Cdr and must sell a risk-free per-
petuity that pays Ddt. If C < D at time zero, do nothing. (2) Over the policy period
the insurer must continuously revise the position. Whenever C > D, the insurer must
go long in the risky perpetuity and short the risk-free perpetuity; otherwise hold
nothing. (3) At the end of the policy period, the insurer must liquidate its positions.

To solve for the more general case when the policy includes a per-claim maximum
indemnity limit, M, the revised valuation formula is**

Y(C, AT, D,M)=AW(C,t;D)-AW(C,1; M + D). 39)

The intuition behind this result is readily apparent after we rewrite equation (36) as

S, = min[max(C, - D,0), M] = max(C, — D,0) — max[C, —(D+ M),0] (40)

% Readers familiar with Shimko’s paper will note this formula differs from his equation for the value
of the insurance policy with a maximum indemnity limit shown on page 235. The difference arises as we
define the maximum indemnity payment M to be the largest payment the insurance company will make to
its policyholder. This interpretation of a policy limit is standard in the insurance literature.



Applications of Financial Pricing Models 651

Thus, the payout to the policyholder is truncated from above as the policyholder
takes a short position in a second insurance policy with a deducible equal to (D + M),
relieving the insurer from paying large losses.

The model which Shimko develops has a number of interesting implications. First,
consider the case when there is no deductible, i.e., D = 0. In this is case, the cash
flows needed to replicate the payoffs on the insurance contract are quite simple. When-
ever C > 0 at time zero, the insurer must purchase a risky perpetuity that continuously
pays ACd!t over the term of the contract and will be liquidated at policy termination.
The fair value of this cash flow 1s

V(C,?»,I;DZO):}L?C—e&%C—’ (41)

where T is the term of the insurance policy and 9 is the risky discount rate. If there
is no correlation between the claims arrival and/or the conditional claim amount
processes and the market portfolio, the discount rate & will only be a function of the
risk-free rate of interest and the expected growth rates of the claims arrival and amount
processes, o, and . Thus, when there is no deductible and no market risk, there is
no reward for underwriting risky liability payments. In addition, increases or decreases
in the riskiness of the claims arrival and/or amount processes will have no effect
on the fair value of the insurance policy. Only positive correlation between the loss
processes and the market portfolio will be priced in the contract. Thus, In the absence
of market risk, a risk premium based upon the volatility of the liability processes
cannot be justified.

When a positive deductible is introduced into the model, greater levels of volatil-
ity will increase the value of the insurance contract. When both a positive deductible
and a policy limit are introduced, the effect of increasing volatility on the value of
the insurance contract is ambiguous. On one hand, increasing levels of volatility will
increase the value of the policyholder’s long position in the first risky perpetuity
in (41). However, the increased volatility also makes it more likely the policy limit
will be reached, increasing the value of the short perpetuity in (41). Either effect can
dominate.

19.8 CONCLUSIONS

This paper discusses the principal financial pricing models that have been devel-
oped for property-liability insurance and proposes some extensions. Insurance pricing
models have been developed based on the capital asset pricing model, the intertem-
poral capital asset pricing model, arbitrage pricing theory, and options pricing theory.
The models assume either that insurance policies are priced in accordance with
principles of market equilibrium or minimally that arbitrage opportunities are avoided.




652 Handbook of Insurance

Additional research is needed to develop more realistic insurance pricing models.
For example, most of the models assume that interest rates are non-stochastic even
though insurers face significant interest rate risk. Modeling multiple-line firms with
multi-period claim runoffs also poses challenging problems. With few exceptions,
existing financial models do not price the risk of insolvency. Estimation problems,
especially for betas and market risk premia, are a major problem given the existing
insurance data. Option models and perpetuity models may offer solutions to some of
these problems, since they rely on relatively few parameters and can be modified to
incorporate stochastic interest rates. However, the options models often rely upon
market completeness and no-arbitrage arguments which are difficult to justify for
some insurance contracts. Additional research is needed on the pricing of insurance
in incomplete markets.

In addition to models now in existence, models based on multi-factor asset pricing
theory (Fama and French 1993, 1996), martingale pricing (Duffie 1988), and lattice
modeling (Boyle 1988) may provide promising avenues for future research. Modifica-
tions of the perfect information, perfect markets results for information asymmetries
also will become increasingly important as the field continues to advance. Also, future
work which incorporates frictions in capital markets (Froot and Stein 1998) may add
additional insights into the behavior of prices in insurance markets. We also expect to
see further advances in pricing models and concepts for CAT bonds and options as the
market for these innovative products continues to develop. Finally, researchers have
applied fuzzy set theory (FST) to financial pricing (e.g., Cummins and Derrig 1997,
Young 1996). We did not explore this topic in the present paper because providing an
explanation of fuzzy mathematics sufficient for readers to understand the application
would require too much space. However, FST may be a promising approach to explore
in future research because it provides a rigorous set of rules for incorporating vague or
imprecise information (e.g., expert judgment, etc.) into insurance ratemaking. Thus,
FST has the potential to add another dimension to the standard financial pricing tech-
niques, which implicitly assume a degree of precision in the information used in

5

pricing that is rarely realized in practice.
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