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Risk MANAGEMENT, CAPITAL BUDGETING,
AND CAPITAL STRUCTURE POLICY FOR INSURERS
AND REINSURERS

Kenneth A. Froot

ABSTRACT

This article builds on Froot and Stein in developing a framework for ana-
lyzing the risk allocation, capital budgeting, and capital structure decisions
facing insurers and reinsurers. The model incorporates three key features:
(i) value-maximizing insurers and reinsurers face product-market as well as
capital-market imperfections that give rise to well-founded concerns with
risk management and capital allocation; (ii) some, but not all, of the risks
they face can be frictionlessly hedged in the capital market; and (iii) the dis-
tribution of their cash flows may be asymmetric, which alters the demand for
underwriting and hedging. We show these features result in a three-factor
model that determines the optimal pricing and allocation of risk and capital
structure of the firm. This approach allows us to integrate these features into:
(i) the pricing of risky investment, underwriting, reinsurance, and hedging;
and (ii) the allocation of risk across all of these opportunities, and the optimal
amount of surplus capital held by the firm.

INTRODUCTION

The cost of bearing risk is a crucial concept for any corporation. Most financial policy
decisions, whether they concern capital structure, dividends, capital allocation, capital
budgeting, or investment and hedging policies, revolve around the benefits and costs
of a corporation holding risk. The costs are particularly important for financial service
firms, where the origination and warehousing of risk constitutes the core of value
added. And because financial service firms turn their assets more frequently than
nonfinancial firms, risk pricing and repricing are needed more frequently.

Insurers and reinsurers are an important class of financial firm. They encounter finan-
cial risk in their underwriting and reinsurance portfolios, as well as in their investment
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and hedge portfolios. Often they have a large number of clients who view their in-
surance contracts as financially large and important claims. Two basic features make
insurers and reinsurers especially sensitive to the costs of holding risk.

The first feature is that customers—especially retail policyholders—face contractual
performance risks. Premiums are paid, and thereafter policyholders worry whether
their future policy claims will be honored swiftly and fully. Customers are thought to
be more risk averse to these product performance issues than are bondholders. There
are several mechanisms for this greater risk sensitivity, some behavioral and others
rational.

The behaviorist story is formalized in Wakker, Thaler, and Tversky (1997). They argue
that “probabilistic insurance”—the name given by Kahneman and Tversky (1979) to
an insurance contract that sometimes fails to pay the contractually legitimate claims
of the insured—is deeply discounted by an expected utility maximizer who pays
an actuarially fair premium. They also provide survey evidence that the discount
is striking in size: in comparison to a contract with no default risk, a contract with 1
percent independent default risk is priced 20-30 percent lower by survey participants.

The rational argument owes most to Merton (1993, 1995a,b). He argues that customers
of financial firms value risk reduction more highly than do investors because customer
costs of diversifying are higher. Insurance contracts are informationally complex doc-
uments and claims payments often require customer involvement. Buying from a
single insurer reduces costs. Furthermore, insurance pays off when the marginal util-
ity of customer wealth is high. If absolute risk aversion is declining in wealth, as many
suspect it is, then a customer will be more averse to an insurer’s failure to perform
than to a debtor’s failure to perform, even if the performance failure is of equivalent
size. Higher costs of diversification and greater impact on utility therefore makes risk
aversion higher for customers than investors.

This motivates our assumption that when an insurer’s financial circumstances decline,
customer demand falls. Indeed it falls more than investor demand. There is evidence
in the literature to support this view of “excess” sensitivity. Phillips, Cummins, and
Allen (1998), for example, estimate directly price discounting for probability of in-
surer default. They find discounting to be 10 times the economic value of the default
probability for long-tailed lines and 20 times for short-tailed lines. These numbers
are too large to be consistent with capital markets pricing.! In this article, we take
the excess sensitivity hypothesis at face value and trace out the implications for firm
value-maximization.

There is a second feature that makes insurers and reinsurers especially sensitive to the
costs of holding risk: they often face negatively asymmetric or skewed distributions of
outcomes. Many insurance and reinsurance portfolios contain important exposures

! Several papers rely on customer preferences to drive insurance pricing, some interacting
with the capital markets. See Zanjani (2002), Cummins and Danzon (1997), Cummins and
Sommer (1996), Taylor (1994), and Hoerger, Sloan, and Hassan (1990). In addition, Sommer
(1996), Grace, Klein, and Kleindorfer (2001), Grace et al. (2003), and Epermanis and Harrington
(2001), contain different types of evidence consistent with the hypothesis that insurers suffer
from reduced demand when credit ratings fall.
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to catastrophic risks—natural and man-made perils of sufficient size and scope to
generate correlated losses across large numbers of contracts and policies. Such events
can be particularly damaging to insurers and reinsurers and can be expected to have
first-order effects on risk allocation, pricing, and capital structure decisions.

Surprisingly, there has been relatively little work that demonstrates how the shape of
the payoff distribution affects key decisions.? Perhaps one reason is that an infinite
number of moments is required to fully describe a distribution’s shape. Another is
that higher-order moments appear only rarely in the capital markets literature. This is
because discrete-time asymmetric distributions can be derived from continuous-time
normally distributed innovations. We adopt here a functional approach to describing
asymmetric distributions, treating them as functional transformations of symmetri-
cally distributed normals. This allows us to generate general pricing and allocation
results without having to specify moments. In this way, this article takes a step toward
explicitly incorporating asymmetrically distributed risks in formal corporate pricing
and allocation metrics.

But neither the sensitivity of customer demand nor the asymmetric nature of under-
writing exposures can invalidate the Modigliani-Miller irrelevance theorems.? A firm
with perfect access to capital could fund investment opportunities using any combi-
nation of instruments. It could raise external finance at the same cost regardless of the
strength of its capital base. It could not add to its market value by managing its risk,
holding different amounts of capital, or pricing customer risk exposures differently
from the outside capital market. Thus, if M&M is to fail, some form of capital-market
imperfection is needed.*

The approach we take here follows Froot and Stein (1998). It employs two realistic
capital-market imperfections. The first is that internal capital is assessed a “carry”
charge. Carry costs imply that, all else equal, an additional dollar of equity capital
raises firm market value by less than a dollar. The most straightforward source of
carry costs would be corporate income taxation. Taxes on additional interest are zero
if the dollar is instead deposited in a mutual fund or other pass-through savings
vehicle. Another source is agency costs: perhaps management will not use the dollar
in shareholders’ best interest. Both sources suggest that the market should place limits
on how much equity capital a firm can feasibly raise. Indeed, the market does this.®

2 Kraus and Litzenberger (1976) and Kozik and Larson (2001) add higher-order moments to the
CAPM directly, the latter specifically in the case of insurance exposures. However, even if we
were to use this for the capital market’s pricing of liquid risks, it does not adjust pricing for
that which is relevant inside the firm. See the discussion in the section “Commentary on the
Pricing of Asymmetric Distributions” below.

3 See Doherty and Tinic (1982) for an application of the Modigliani and Miller logic to insurance
firms.

4 There are a large number of articles that help motivate the failure of Modigliani-Miller, ap-
pealing to imperfections of various sorts. On the pricing of insurance and reinsurance claims,
see, for example, Cummins and Phillips (2000), Garven and Lamm-Tennant (2003), Cagle and
Harrington (1995), and Winter (1994). On capital (i.e., risk) allocation see Merton and Perold
(1993), Froot and Stein (1998), and Myers and Read (2001).

5 See Jaffee and Russell (1997) on this point.
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The second imperfection is an “adjustment” cost of capital. This is a standard ap-
proach, used in models of financing under asymmetric information (e.g., Myers and
Majluf, 1984), where raising external funds becomes expensive when existing capital
is low. It provides another motivation—in addition to the product-market and asym-
metry concerns above—for the firm to get around paying carry costs by holding too
little capital. Following Froot, Scharfstein, and Stein (1993), if the firm allows internal
funds to run down, it will increasingly have to choose between cutting highly reward-
ing investments or incurring the high costs of external finance. In the insurance and
reinsurance industries, adjustment costs of capital appear most clearly in the after-
math of catastrophic events, when depleted industry capital results in high prices and
reduced availability of insurance and reinsurance.®

With capital-market imperfections, product-market sensitivity to risk, and exposure
asymmetry, the firm exhibits strong valuation effects from risk and capital manage-
ment. As one might expect, these latter factors tend to make the insurer or rein-
surer more conservative in accepting risk, more eager to diversify investment and
underwriting exposures, more aggressive in hedging, and more willing to carry costly
equity capital. As in Merton and Perold (1993) and Myers and Read (2001), our frame-
work jointly and endogenously determines optimal hedging, capital budgeting, and
capital structure policies.”

We find that product-market considerations contribute additively to capital-market
distortions in reducing the desire to hold risk and to price risk at fair market levels.
Product-market considerations also tilt the optimal level of capital and surplus toward
higher levels. In addition, we prove the firm will price distributional asymmetries
in payoffs which are unpriced in the capital market. Negatively skewed exposures
impose costs that in general are higher than those of positively skewed exposures, and
this causes firms to seek more aggressive reinsurance and hedging and less aggressive
and more diversified underwriting and investment.

We also demonstrate that the capital- and product-market imperfections bias firms
toward removing risks. Firms maximize value by removing a risk source completely
unless: (i) illiquidity makes the risk costly to trade or (ii) the firm has expertise in
that risk source that allows it to outperform. Thus, even though the firm’s hurdle for
bearing negatively asymmetric insurance exposures is higher than that of the capital
market, insurers nevertheless derive their value by earning returns on insurance ex-
posures that, after acquisition costs, exceed required capital market hurdles. This has
the normative implication that financial intermediaries should shed all liquid risks in
which they have no ability to outperform and devote their entire risk budgets toward
an optimally diversified portfolio in exposures where they have an edge. For insurers
specifically, this means warehousing insurance risks, where they arguably have infor-
mational advantages, and shedding all others. Their warehoused insurance risks will
generally be those that are also illiquid—after all, if any were frictionlessly available,
shareholders could directly provide their own capital to back them, and average re-
turns would be competed down to rates required by the capital market. Thus, insurers

® See, for example, Gron (1994a,b), Cummins and Danzon (1997), Froot and O’Connell (1997),
and Froot (1999, 2001).
7 See Venter and Major (2002) for a survey of techniques as applied to insurance.
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also generally should not hold perfectly liquid insurance risks unless they have pri-
vate information that allows them to cherry pick among them. This is all the more
true because of the negative skew in “long”-position insurance returns.

In practice, of course, insurance and reinsurance companies, do not seem to eliminate
all liquid exposures. While beyond the scope of this article, the reasons for this might
be several. One is that our assumed capital- and product-market imperfections do not
exist, or have limited financial impact. Most articles do not dispute the existence of at
least some of these imperfections, though their exact specifications are a matter of de-
bate.® A second potential reason is that as financial investors, insurers and reinsurers
have a real or perceived ability to outperform capital market hurdles. Realized insurer
returns on their investment portfolios probably do not provide evidence that this abil-
ity isreal, Berkshire Hathaway notwithstanding. This leaves corporate overconfidence
concerning capital market investment opportunities as a possible explanation. This is
an area with interesting new evidence.’

THE MODEL: TIMING AND ASSUMPTIONS

The model, which follows Froot and Stein (1998), has three time periods, 0, 1, and 2.
In the first two periods, time 0 and 1, the insurer chooses its capital structure and then
makes underwriting and hedging decisions. These two periods highlight the fact that
consumers will pay less for an insurance contract written by a firm with low surplus
with given risk or by a firm with more negatively asymmetric risk. The last period
closes the model by allowing the insurer to raise additional capital after paying (or
defaulting on) its losses. At this stage additional frictional costs of raising capital are
added.

Time O: Insurer Capital Structure Decision

At time 0, the insurer chooses how much equity capital, K, to hold. The capital goes
toward financing various risks, in both investments and underwriting. There are,
however, distortions that make the use of capital expensive. First are the deadweight
costs of carrying capital, which can be thought of as arising from corporate income
taxes or from agency costs associated with shareholders’” imperfect controls over man-
agement. These costs make it expensive for a firm to carry large amounts of capital.
We summarize these deadweight costs as tK, where t is the effective “tax” rate. If
7 = 0, the accumulation of equity capital would be costless, and the firm would not
conserve on its use of equity capital.

Also at time 0, we assume that the insurer inherits a given portfolio of risk exposures.
This portfolio results in a time 2 random payoff Zp = up + ep, where pp is a mean
and ¢p is a mean-zero disturbance term. The risks arise from the insurer’s preexisting
portfolio of investments in securities, derivatives, and underwriting risks.!? The total
payoff from the insurer’s internal funds in place as of time 0 is Zp + (1 — 7)K. As
discussed below, payoffs are realized in the model at time 2.

8 See Kaplan and Zingales (2000).

? See Malmendier and Tate (2005) for a discussion of CEO overconfidence and corporate invest-
ment. For a broader survey of behavioral corporate finance see Baker, Ruback, and Wurgler
(2006).

10 In practice, these risks may come in the form of assets, liabilities, or neither.
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The payoff Zp has components from the capital markets as well as the insurance and
reinsurance market activities of the insurer. We define these components in such a
way so that they are independent. To allow for explicit solutions above, we will also
assume that the capital markets portion is normally distributed. We denote the capital
market payoffs by 1§ + &5, distributed normally with mean 1 and variance (6%)?.

The normality assumption is convenient for deriving explicit solutions below. But it is
not very realistic for the skewed payoffs typical of insurance and reinsurance positions.
Consequently, the insurance disturbance term can be nonnormally distributed. The
insurance payoff is given by ul, + f(eL), where f(el) is a functional transformation
of ¢}, a normally distributed random variable with mean zero and variance (o'},)?.
We assume that f is at least twice differentiable and that it satisfies E[ f (¢5)] = 0 and
E[f ’(ef,)] =1, i.e., that the transformation of the underlying normal alters neither the
mean nor the average exposure to 85).

This transformation is flexible for describing option-like and other asymmetric payoffs
based on a symmetrically distributed underlying variable. For negatively skewed
payoffs, such as those on the underwriting book, it is sufficient to require f’ > 1 for
all ef, < 0. For positively skewed payoffs, such as those on a reinsurance portfolio, a
sufficient condition would be that f’ < 1 for all e, < 0.11/12

The mean payoff from the insurance market component, i}, differs from the capital
markets component, in that uL, contains an endogenous component while 1§ is for
convenience fixed. Different time 0 choices of risk affect the product-market oppor-
tunities through ul,. Thus, it represents the expected return on an ongoing business,
rather than the return on a particular portfolio of policies in force at time 0. We as-
sume that increases in firm riskiness reduce u},. This can be interpreted as due to
some combination of behavioral and rational factors mentioned above. We repre-
sent the sensitivity of the preexisting product-market opportunities by writing u}, =
uh(s?), where s? = (%)*measures the squared standard deviation of company-wide
risk per unit of capital. An increase in risk/capital—“effective leverage”—reduces the

1 ’
expected opportunity set between time 0 and time 2, i.e., % =uh <.

I The function f can be thought of as mapping the payoff of an underlying normally distributed
asset into the value of an appropriate number of derivative contracts. For example, if the assets
of an unlevered company provide payoffs ¢}, then the equity of that company is represented
by f(el) = &L, i.e., f is an affine transform with slope of one, so f(},) is distributed normally.
Alternatively, &}, could represent the payoffs on a share of the company’s equity, and f(eL)
might represent an amount of cash plus an appropriate number of, say, call options written
on the company’s stock f(e1) = Qmax(el, — S, 0), where § is the strike price of the option and
Q = Q(S) is the number of options that ensures the average exposure to the stock is unity,
E[f'(¢})] = 1. The cash amount is to ensure that the cash plus options have equal value to the
shares, E[ f(¢L)] = E[¢}]. Clearly, the payoff distribution of the cash plus options resembles
a standard call option payoff, is positively asymmetric, and therefore not normal.

There is no exact correspondence between the f function and the third moment of its distri-
bution, skewness. The distribution of f defines all higher-order moments, not just the third.
Thus, in the text below, we often refer to the distribution of f as negatively (or positively)
asymmetric, rather than negatively (or positively) skewed, to be clear that we are not merely
referring to the behavior of the third moment.
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The existing book of insurance underwriting should be interpreted as a multiyear
portfolio of insurance, even though each contract requires annual renewal. As the
risk of the insurer changes, premiums previously paid for coverage on this book
cannot change, of course. However, our assumption is that the premium rate on
renewals declines with company-wide increases in leverage. That is, we interpret the
underwriting book in place to be an ongoing business.

Naturally, higher leverage increases the risk of default. By increasing both risk and the
probability of default, managers can transfer value from policyholders to sharehold-
ers. This generates risk seeking behavior on the part of management and shareholders.
Following Froot and Stein (1998), we rule this out by assuming that risk levels are not
so great as to eliminate completely shareholder payoffs. Policyholders therefore dis-
like risk because it suggests that the insurer will scrimp on investments in policyholder
services, increase the hassles of receiving claims, and make policyholders more likely
to incur the deadweight costs of switching insurers. For simplicity then, policyholders
lose value to deadweight costs, not to shareholders.!?

To summarize the set-up at time 0: The insurer chooses an amount of cash capital, K,
which is entirely equity-financed. Cash capital results in a deadweight cost of Kz. This
cost forms a wedge between the value of the assets inside the firm and the value of
the firm in the marketplace. The insurer also holds a portfolio of exposures with net
payoffs of Zp = up + ep = u§ + ukL(s?) + &% + f(el), where the two components of
ep, €5 and ¢, are defined so as to be independent, mean-zero normals. Because the
premiums available in customer underwriting decrease with increases in firm-wide
risk, /,Lg < 0, the mean return on Zp is endogenous to the choice of K.

Notice that the deadweight costs of capital thus far come from the stock of capital, K,
and not from any costs of adjusting the capital structure. This is different from most
standard models of financing under asymmetric information. In those models, costs
are generally incurred when raising incremental external funds, not by having equity
capital on the balance sheet per se. Indeed, we assume below that there are exactly
such flow costs of new external finance at time 2.

The absence of any cost to raising capital at time 0 is clearly a shortcut. Nevertheless,
it allows us to focus better on the appropriate long-run “target” level of capital for the
insurer. Over long periods of time (over which adjustment costs can best be amortized),
what kind of ratings standard is best for the insurer or reinsurer? How should it
position itself in that regard? We recognize that, if at any point in time, the insurer is
far away from its ideal target, it may face costs of adjustment in getting to the target
quickly, but it is nonetheless interesting to ask the question of what the target should
be.

Time 1: Insurer Underwriting and Hedging Decisions

At time 1, the insurer makes additional decisions. It decides how much new in-
vestment and underwriting to undertake and how much hedging or reinsurance
to invoke. We treat investment, underwriting, hedging, and reinsurance in a single

13 See Hall (1999) for evidence on the magnitude of apparent risk seeking financial decisions in
U.S. insurers.
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new-opportunity specification. As above, the jth new opportunity has an expected
and unexpected component, given by Zy; = un,j + en,j, where uy,; is the mean
payoff, and ey,; is a mean-zero normally disturbance term. Each opportunity can
represent a new underwriting opportunity, a reinsurance contract, a capital markets
hedging vehicle, or any other self-financing new investment.

As above, it is useful to think of each opportunity as being comprised of two inde-
pendently distributed parts, a capital market and an insurance-market component.
In what follows, we treat the capital market component as fully liquid and cost-
lessly traded. As a result, it will always trade at “fair” prices. We also assume that
the insurance market exposures are illiquid, and allow for the possibility that they
are mispriced, offering returns that are not fair based on their capital market risks.
This latter group of exposures could easily include not only traditional insurance and
reinsurance risks, but also credit exposures. Indeed, any risk with a component or-
thogonal to the major capital markets risks could be considered as an insurance market
exposure rather than a capital market exposure. All that matters for our analysis is
that the market-wide factors priced by the capital markets trade costlessly and at fair
prices.

To see all this more precisely, we additively decompose the total payoff from the jth
new opportunity into the independent capital and insurance market exposures:

Znj=nnj+eng = (un; +1%,) + (68 +e5,)

where the superscripts I and C denote, respectively, insurance and capital market
exposures. We assume that the jth new-opportunity disturbances, &}, j and 8%], j, are
independently distributed mean-zero normals.' The combined disturbance, ¢y, j, may
contain any combination of insurance and capital market components.

The magnitude of the insurer’s exposure to the new opportunity is a choice variable,
given by n;. Examples of 7; would be the number of policies written, or the number of
futures or reinsurance contracts used to hedge, or the number of credit default swaps
purchased or written, etc.; even a new business opportunity can be described in this
way. In other words, 1; is meant to cover essentially any new risk decision that the
firm contemplates. Thus, the total payoff from the new underwriting, hedging, and
investment opportunities is nZy = n(un + en) = 31 (i ; + 1 + e +€x)-

The insurer’s realized internal wealth at time 2, w, is therefore given by:
w=Zp+nZy+ K1 -1). ¢))

In words, the amount of cash the insurer has on hand at time 2 to pay claims will
depend on the realizations on its preexisting capital market and insurance exposures,

4 Normality is used to derive explicit solutions for the choice variables. However, our approach
allows for more generality in the distributions of the disturbances and we comment on this
below.
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Zp, on the extent of its new underwriting, investment, and hedging outcomes, nZy,
and on the amount of capital, K, raised at time 0.1

The sensitivity of underwriting opportunities to firm-wide risk levels creates a mean-
ingful need for risk management for the value-maximizing insurer. To see this, sup-
pose the insurer finds an underwriting opportunity where, loosely speaking, pre-
miums are high relative to risk. In this circumstance, the insurer will choose to
underwrite, setting n; > 0. However, as n; grows, internal risk increases, raising 2
and reducing premiums on all existing underwriting by ug d(s?). All else equal, this
product-market externality lowers expected internal funds, E[w], and raises internal
hurdle rates. The underwriting opportunity itself and other risky investments appear
less attractive, while costly hedging opportunities and balance-sheet capital appear
more attractive.

Lastly, we note that this specification of uk, = ul,(s?) need not be thought of as re-
stricted to just the existing underwriting business. It is likely that higher s?> would
degrade future product market opportunities, and not simply underwriting already
in place. In a sense, s> and its impact on expected underwriting performance can be
viewed as partly coming through a reputational channel. Thus, if these effects—both
on business in place and on future business through reputation—are important, then
the magnitude of n}, d(s?) may be large if measured as a fraction of business that is
already in place.

Time 2: The Realization of Cash Flow, and the Insurer Response

Next we specify how the insurer uses internal funds to create value. The simplest
possibility is to assume that the insurer terminates its operations at time 2, dividending
back all realized internal funds, w, to investors. In that case, the ex post value of the
firm, denoted by P, equals the realization of w, so that P = w.

Insurers and reinsurers are likely to perceive risk as costly because it degrades capi-
tal market opportunities as well as product market opportunities. That is, if internal
capital becomes riskier, the perceived cost of raising external funds increases. This
is the theme in much of the literature on costly external capital markets (see, e.g.,
Greenwald, Levinson, and Stiglitz, 1991). Our formulation follows Froot, Scharfstein,
and Stein (1993). We assume that after w is realized, the company has a further invest-
ment opportunity—e.g., it might be able to build a new interface with its customers,
open an entirely new line of business, buy an existing business, etc. This investment
requires a cash commitment of I, and yields a gross return of H(I), where H(I) is an
increasing, concave function of I. The investment can either be funded out of internal
sources, or external sources in an amount e. Thus, I = w + e. The critical point is that
there are convex costs to raising external finance, given by C(e). This means that it

15 Note that in our specification, the insurer’s risk level impacts expected internal funds only
through pp(s?); uy is not a similar function of squared risk per unit of capital. One might
expect that additional risk would affect new opportunities as well as the existing opportu-
nity set. Including this in the specification complicates the expressions, but doesn’t change
importantly any of the results. We therefore leave out the sensitivity of the new opportunity
to firm-wide risk.
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becomes more costly to raise funds the larger is the amount that must be financed
externally.'®17

Denote by P(w) the solution to the insurer’s time-2 problem:

P(w):mIaxH(I)—I—C(e), subject to I = w +e. 2

Froot, Scharfstein, and Stein (1993) demonstrate that P(w) can be rigorously derived
in the context of one standard optimal contracting models as an increasing concave
function. Thus, P, > 1 and Py, < 0.

The concavity of the P(w) function generates a capital markets rationale for insurer
risk management. This concavity in turn arises from two sources. First is the convexity
of C(e), which matters to the extent that fluctuations in internal cash result in fluctu-
ations in additional costs of raising external funds. Second is the concavity of H(I),
which matters to the extent that fluctuations in internal cash result in fluctuations in
investment, lowering the average return on investment. Loosely speaking, the more
difficult it is for the insurer to raise external funds on short notice at time 2, the more
averse it will be to fluctuations in its time 2 internal wealth w. Thus, fund raising
opportunities in the capital markets become less appealing as internal funds become
increasingly unpredictable.

The derivative P, summarizes the ex post value of having an additional dollar of
internal funds. The value E[P,,] summarizes the ex ante value of this dollar. Naturally,
a property of the model solution must be that E[P,] > 1: an additional dollar of
internal wealth has expected ex ante value of at least one dollar. To see this, note that
even if there were no costs of carrying capital (r = 0), a value-maximizing firm would
never raise a dollar of external funds to increase firm value by less than a dollar.
In the presence of costs of carrying capital (z > 0), the inequality will be strict, i.e.,
E[P,] > 1.

ANALYSIS

To solve the model, we work backwards. We have already seen that any given realiza-
tion of w at time 2 can be mapped into a payoff, P(w). Next we ask from the perspective
of time 1, when w is still uncertain, what amount of new investment, underwriting,
hedging, and reinsuring will maximize expected market value? Then we move back

16 Froot, Scharfstein, and Stein (1993) give a number of microeconomic rationales—based on
agency and/or information problems—to justify this sort of specification for the C(E) func-
tion. They show how this convex functional form arises in a specific optimal contracting
setting, a variant of the costly state verification model due to Townsend (1979) and Gale
and Hellwig (1985). Stein (1996) generates a similar formulation in a banking model where
nondeposit liabilities are subject to adverse selection problems.

71t is straightforward to allow the insurer’s gross return on investment to be sensitive to
product-market perceptions about time 2 risk and time 0 capital. For example, we could
specify that H = H(I, s?), where H, < 0, Hy; > 0. This would make more explicit the repu-
tational channel through which past risk and capital behavior affect future product market
opportunities.
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to time 0 to solve for the right amount of capital given the costs of carrying it, and
the costs of potentially having too little capital at time 2, thereby necessitating cutting
profitable investment or raising costly external financing.

Shareholder Valuation of the Insurer at Time 1

From the perspective of time 1, the shareholder payoff, P(w), is a random variable. In
order to value the payoff, we need a pricing model. We assume that the company’s
equity trades costlessly and is priced fairly. Specifically, we assume that the fair pric-
ing rule has required returns as a linear, decreasing function of covariance with a
“market” factor, M. It is straightforward to generalize this to a multifactor setting,
where covariances with many factors determine fair-market required returns. With
just a single factor, the present value of the insurer’s shares V, will be:

V = {E[P(w)] — ycov(P(w), M)} 3

where, for simplicity, the riskless rate of interest is zero.

First, we value the pure capital market exposures that are contained in both Zp and
Zn. Expected returns for these exposures, u$s and u§;, will be determined by the
pricing model in Equation (3), because liquid exposures are priced fairly and have
no transaction costs. Fair pricing implies simply that u§ = ycov(e§, M) and u§; =
ycov(e$;, M).

Pricing these liquid exposures helps clarify our assumptions about the expected re-
turn on underwriting opportunities, uL, = ul(s?). If fair market pricing held for
u%, then it would be a function solely of market covariance as in Equation (3), and
not a function of firm-wide risk, s?>. This would occur if capital markets investors
had direct, costless access to insurance exposures, since competition among them
would drive insurance expected returns to fair pricing levels. They do not, how-
ever, have such access. These exposures are expensive to underwrite because of
the costs of rate evaluation, monitoring, claims evaluation and payment, regulation,
etc.

Substituting the definition of fair pricing into Equation (1), we can rewrite time 1
internal funds as:

w = ycov (8% + aneg,,j,M) + uh?) + anuf\,,]- + &5+ f(ep)
i j

+ Zl’l]‘EN,]‘-i—K(l —‘(), 4)
j

where uuf, and pj, j canbe interpreted as expected excess returns, above the fair market,
earned on insurance market exposures. Note that we have used the fact that the
insurance market shocks are independent of M, thereby setting their covariances to
zero. To collapse terms, it is useful to rewrite (4) as:

w=p+e+ f(eh), (5)
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where u = ycov(e§ + > n]zsN M)+ b2+ n];LN] +K(1—1) and ¢ =& +
>_;nj(en,j). Equation (5) has the virtue of separatmg w into a mean plus a normal
dlsturbance and nonnormal disturbance.

Optimal Hedging Policy at Time 1 for Capital Market Exposures

The insurer designs its risk management policy so as to maximize shareholder value,
V. Using Equation (3), this means it will choose 7; at time 1 to satisfy:

av dE[P(w)] dcov(P(w), M)

dnj dn;j dn;j =0 ©)

where all expectations are taken with respect to the ¢’s, and where dn; represents a
change in the quantity of the jth new investment. Taking derivatives and using the
definition of covariance, we can write:

av dw dw dcov(P(w), M)
— = E[P,]JE | — Py,— ) —y—————. 7
an, [Py] (dm) +cov< dn]-> y I, )
Some algebra, Equation (4), and the fact that d(S) = W cov(w eN,j)
implies:
av. dw d P(w), M
EIP,IE ( ) T cov(Py en) — y TVEL@ M) ®)
dn] dn; dn;
where
dw 02
W—,up K2cov(w sN])+uN]+ycov(sN],M)+sN] 9
j

To simplify this, we need to express the covariances in terms of the underlying random
variables. Note first that, by assumption, both ey,; and M are normally distributed.
This allows us to use a generalization (see Stein, 1981) for normal random variables
x,y,and z:

cov(g(x,y),z) = Elg:lcov(x, 2) + Elgylcov(y, ), (10)

where g is a continuous function (subject to some mild regularity conditions) and the
expectations are taken with respect to the joint distribution of x and .

Next, assume that there are in total ] + 2 new opportunities. The first | describes op-
portunities which contain combinations of insurance and capital market exposures.
The last 2 are reserved for capital market exposures that span all the capital market
disturbances.’® With this in mind, suppose that the | + 2nd new product market op-
portunity is a costlessly traded instrument with payoffs identical to the market return,

18 We can add arbitrarily many of such factors, but with no change in generality or important
results.
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M. Since capital market opportunities are fairly priced and there is no insurance mar-
ket component, we have that en 12 = €5, ,, = Mand jf;; ., = 0. The independence
of insurance and capital market components means that cov(el, ey j42) = 0. Using
this fact, and Equations (8) and (9), we can write:

d_V = E[P,] (ugicov(w, M)) + E[Pylcov(w, M) — yE [szvd—w} cov(w, M) =0,
dTl]' KZ dTl]'
(Gh)

where we substituted M for ey j 42, and cov(w, M) for cov(e, en,j 42).

We can then state our first proposition, taking as given the first | + 1 new opportunity
decisions, 1;:

Proposition 1: It is optimal for the firm to choose a market-risk hedge such that
cov(w, M) = 0. Thus, the optimal hedge is the minimum variance hedge ratio, i.e., n*]‘ o=
—cov(eh + 1111 njefy; M)

var(M) ’

To prove this, one can see readily that Equation (11) is satisfied by setting #; such that
cov(w, M) = 0.1 In other words, the insurer will hedge out all of the market exposure
in internal funds, w, minimizing its variance with respect to M. The firm’s market
value rises because the reduced variance of internal funds improves product market
opportunities and lowers the costs of future external finance. The optimal hedge ratio
then solves cov(w, M) = 0 for nj1,, with n7 4 as above. In words, it is optimal to
strip market risk entirely from internal funds. Any exposure to M contained in the
preexisting portfolio, or in other new investment opportunities, is offset with the
J + 2nd hedge instrument, with returns equal to M.

Our next result is analogous: like the market risk, M, other capital markets exposures
will be fully hedged, provided that they are fairly priced. To see this, let the | 4+ 1st new
opportunity be a hedge of all other capital market exposures that are independent of
M. There is no insurance component to the | + 1st new opportunity, so that en ;11 =
€57 417 M1 = 0,and cov(ep, en 1) = 0. This and the previous hedge of M implies
that the last two terms of Equation (11) disappear.

It is then easy to show:

Proposition 2: The optimal hedge ratio for capital market exposures sets internal funds
to be uncorrelated with the hedge of capital market exposures, e%,/ 41/ 1€, covw, enyyy1) =
cov(e, en,j+1) = 0. The implied solution is given by the minimum-variance hedge, ny ; =

—cov(eh + Yy njenjen ) 20
var(en,j +1) :

19 We assume that the second-order conditions are satisfied throughout.

2 Note that since these other capital markets exposures are assumed to be orthogonal to M,
the solution for the | + 1st hedge does not depend on 117 ,,. In general, if the capital market
exposures are not independent, then the relevant n; first-order conditions must be solved
simultaneously rather than sequentially as above. See the discussion below.
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Overall, the hedging of capital market risks strips out those exposures entirely from
internal funds. Thus, the expression for internal wealth with capital market hedges
in place becomes:

wi = ppD) + Y njun;+ f(ep) + D _njen,; + KA —1). (12)
j i

These results echo those in Froot and Stein (1998): fairly priced exposures will be
hedged fully by the firm. Because they raise the variability of internal funds, the costs
that such risks impose on the firm will not be fully compensated by the fair market
expected return.

Optimal Hedging Policy at Time 1 for llliquid Exposures

With the capital market risks fully hedged at fair market prices, we are ready to add
in new opportunities that contain insurance market exposures, i.e., those portions of
risk that may be illiquid. There are two things that distinguish the required return and
hedging decisions of these illiquid components from the capital market counterparts
that we examined above. The first is that the insurance exposures interact with the
nonnormal payoffs already in the portfolio. This means that insurance instruments
may be able to alleviate the costs, or enhance the benefits, of the asymmetrically
distributed risks already in the firms’ portfolio. The second is that these exposures are
illiquid, and therefore may have required returns that differ from fair market returns.

We explore first the optimal amount of investment in the new opportunity. We then
look to the implied hurdle rates, to understand better the firm’s reservation price
for new opportunities. We do this below for the jth new opportunity, which, unlike
in the previous subsection, may contain both capital market and insurance market
exposures.

To see the implications of these, we rearrange Equation (11), where the last term has
disappeared due to the full hedging of capital market exposures.?! We then have one
of our two main propositions in the article:

Proposition 3: The optimal amount of the new opportunity is given by three factors: the excess

risk-adjusted return relative to its own variance, adjusted by the firm’s tacit risk aversion,
L c

(5 }LG (1 v eovtey M ); a kind of asymmetry-adjusted covariance of the opportunity relative

COV(S{;,E{\,, )

to own variance, (%)(W); and the minimum-variance amount of the opportunity,
Nj

var(el, )

cov(w; el ;)
var(ef ;)

g = < 1 ) MN,j — )/COV(S%,j,M) B ( G ) COV(Ef)/SﬁI,j)
I—\F+G var(ey ;) F+G var(ey ;)
cov(wj,sf\],]-)
B Var(sf\”) ’

*! We also use the fact that with E[f']1 =1,cov(f (e}), £ ;) = cov(ep, ey ).
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where w;j = w — njef\,,j is total internal funds less the disturbance from the jth new
opportunity.

Before we interpret the proposition in its entirety, several terms in the above expression
require definition. First, F = —u} % > 0 describes the sensitivity of internal funds
to an increase in firm-wide risk that comes through the product-market channel.
Essentially, F measures the magnitude of the negative demand externality created by
customers who are more sensitive to diversifiable risk than are capital providers. This
externality is greatest when leverage is high, that is, when the variance of internal
funds is large relative to external capital. If the capital base grows, but firm-wide
risk remains constant, u}, (and therefore F) moves toward zero. The hypothesis is
that customers are concerned about risk not absolutely, but relative to the size of the
capital base.??

The second term, G = _5[[113?’3"] > 0, measures the concavity of firm-wide valuation in

the capital markets (see Froot and Stein, 1998). It is similar to absolute risk aversion
based on an investor’s utility function and is the result of variability in expected
future costs of raising external finance. The variability of internal funds not only
negatively impacts product-market opportunities through F; it also degrades future
growth opportunities by making external funds on average more expensive. G is a
declining function of the realization of w (F is actually a function only of the ex ante
properties of w). G therefore converges toward zero as w becomes large relative to K.

The terms F and G appear in an additive way because they are complementary chan-
nels through which changes in firm-wide risk impacts value. To form a measure of the
effective risk aversion of the insurer, both F and G are required. If F = G = 0, then the
insurer acts as though it is risk neutral, being willing to undertake an infinite amount
of a new investment with positive risk-adjusted excess return, uy,; — ycov(e§, i M.
When F + G > 0, the insurer’s response to a positive NPV new opportunity is more
muted, as long as there is some unhedgeable risk imposed on firm-wide capital as a
result (i.e., var(ey ;) > 0).

The analogy with risk aversion is not exactly correct for two reasons. First, F and G
are endogenous to the properties and realization of w; in many cases investor risk
aversion is treated as an exogenous parameter, determined entirely by the form of
the utility function. Second, and more importantly, F and G measure the willingness
of the insurer to pursue risky returns in excess of fair value. By contrast, investor risk
aversion measures the willingness to pursue risky returns in excess of the risk free
rate. An investor will always want to hold at least a small amount of any risk that has
positive expected returns above the risk free rate. A corporation will not wish to hold
any risk unless it at least pays a return greater than fair value as determined in the
capital markets.

Third, G = W measures the impact of the payoff asymmetry of preex-
isting exposures. To see this, suppose that f(¢l,) describes the negatively asymmetric

22 We abstract from any absolute size effects, which would have customers be more sensitive to
a given risk/capital ratio for smaller firms. There is probably a strong argument that such size
effects can be important, in that there are at least some fixed costs of producing insurance.
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payoffs of a typical insurance contract—occasional large negative outcomes offset by
far more frequent small positive outcomes. In that case, E[f'] > 1 for ¢}, < 0 and
E[f'] <1 for el > 0. Given the concavity of P(w), this creates the presumption that
G > 0. Loosely speaking, the more negatively asymmetric is the preexisting portfolio,
the more concave is the value function in expectation; i.e., as the distribution of f(.)
becomes more negatively asymmetric, E[P(w)] falls. A positively asymmetric risk
will provide the firm the additional benefit of reducing the concavity of the value
function, so that G < 0. In this way, the asymmetry of preexisting payoffs enhances
or reduces the potency of individual new opportunities, depending how they interact
with the underlying risk, L. A firm will want to hedge to a greater (lesser) extent to
reduce the negative (positive) asymmetry of its underlying payoffs.

Indeed, Proposition 3 shows that the firm will hedge a negatively asymmetric ex-
posure beyond the minimum variance amount. To see this, consider a new hedging
opportunity that pays no return above fair market value, uy,; — ycov(e§, M) =0,
so that the first term in Proposition 3 disappears. If the preexisting positions all have

normal distributions, the firm will of course want to hedge by an amount that elimi-
1 .

nates the preexisting exposure to the risk, C(‘Z(r%)f—) However, if its preexisting payoffs

are nonnormal, it will wish to go further, hedging more (less), provided that by do-

ing so it can reduce the negative (increase the positive) asymmetry in its preexisting

exposures. The ability to use the hedge to reduce the negative asymmetry in payoffs

is given by Geov(ep, e ;).

We can take this one step further by looking back to the first-order condition in Equa-
tion (8) above. It shows that the firm is actually trying to reduce covariance of each
exposure with the shadow value of internal funds, P,,. A perfect set of hedges would
completely eliminate uncompensated covariation in P,. For normally distributed
risks, this is equivalent to eliminating the exposure with internal funds, w, itself.
However, if the distribution of preexisting exposures is nonnormal, the asymmetry
generally interacts with the concavity of P(w). In that case, minimizing the variance
of Py, is no longer the same as minimizing the variance of w. The optimal n; must
take into account the new investment’s impact on the covariation of P, by altering
the asymmetry of w.

Finally, note that, like F and G, G falls to zero as internal funds increase relative to
initial capital. Asymmetry in the preexisting payoff distribution is less costly when
there is plenty of internal financial slack. Another way to say this is that, when w is
large, the shadow value of internal funds, P,, converges toward 1, and there is little
need to manage internal funds. As a result, F, G, and G are all near zero.

Now that we have dissected the optimal new opportunity decision rule, it is straight-
forward to rearrange the expression to derive new opportunity hurdle rates:

Proposition 4:  The required incremental rate of return on an incremental amount of the jth
new opportunity is given by

un,j = ycov(M,ef ;) + (F + G)cov(w, ey ;) + Geov(ep, ey ;)-

Proposition 4 shows that pricing internal risks requires a three-factor model. The first
factor is standard—the quantity of market risk, cov(M, &§, j), multiplied by the price
of market risk, y.
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The second factor is the quantity of firm-wide risk, cov(w, e}, ;), multiplied by the
price of firm-wide risk. Firm-wide risk is also the second factor in the Froot and Stein
(1998) two-factor model. This source of risk is also key in related studies, such as that
of Myers and Read (2001) and Merton and Perold (1993). However, in the present
context, the price of firm-wide risk, F + G, is greater than in previous studies. That
is because of the additional product-market channel through which firm-wide risk
impacts firm value. Notice also that the quantity of firm-wide risk is measured with
respect only to the insurance market component of the jth new opportunity. Because
the capital market risks are fully and costlessly hedged, there is no need to penalize a
new opportunity for containing them.

The third factor is the asymmetry of firm-wide payoffs. It is the product of the quantity
of asymmetry risk, cov(ep, e}, j)—i.e., the covariance of the jth opportunity with the
asymmetrically distributed components of internal funds—with the price of asym-
metry risk, G. It is worth reemphasizing that our definition of asymmetry does not
correspond precisely with skewness, or any particular group of moments of the asym-
metric payoff distribution. The price of asymmetry risk comes not from asymmetry
per se, but from the interaction of the asymmetric distribution with variation in the
marginal value of internal funds, Py,.

Of course, for both empirical and theoretical reasons, it is sensible to assume that
an insurer’s or reinsurer’s preexisting portfolio will be negatively asymmetric. This
creates the presumption that G will be positive for these firms, and probably for
financial intermediaries in general.

Commentary on the Pricing of Asymmetric Distributions

It is often argued that much of the standard valuation models in finance are poorly
suited for incorporating the pricing of asymmetric payoffs. For example, because in-
vestors (and firms) dislike negative skewness, capital market pricing formulae might
include a factor based on the skewness or co-skewness of a position. Others in fi-
nance rebut this criticism, however, by allowing for continuous-time liquidity and
trading with changing first and second moments. In such a case, negatively skewed
distributions over discrete time intervals can often be replicated by Brownian motions
(distributed normally), with conditional expected returns and variances that evolve
over time. Basically, the effects of asymmetries on pricing can often be reproduced by
more frequent trading.?

In our setup, we give the benefit of doubt to the continuous trading argument for a
company’s equity. (Although for insurance companies, in particular, the possibility of
a large, sudden event that discretely diminishes value, like that of an earthquake or
terrorist attack, is very real.) Our valuation function, Equation (3), therefore ignores
distributional asymmetries in determining the value of an asset based on expected
cash flow and its covariance with the market.

2 This assumes that over the discrete interval, the value path is continuous, so that every value
path can be drawn without “lifting the pencil.” Gaps in the value path may indeed require
additional factors to be priced accurately. Notice, however, that while individual insurance
contracts or derivatives may indeed have such value gaps, if each of these is small and
reasonably independent, then, at the level of the portfolio, the central limit theorem applies,
and internal funds are approximately normally distributed.
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However, even after ignoring return asymmetries for the pricing of cash flows in
Equation (3), asymmetries matter for determining the deadweight costs facing the
firm. Low realized levels of internal funds make future investment opportunities
more costly to finance because of deadweight financing costs, C(e). Thus, negatively
skewed payoffs will tend to increase the expected deadweight costs of external finance,
thereby directly reducing value. This leads to a positive G and a reduced level of P(w),
all else equal.** Asymmetries here affect expected net cash flows, and thereby affect
value.

While the continuous trading argument above might plausibly apply to a company’s
equity, it certainly wouldn’t apply to the illiquid insurance exposures that comprise
w. Asymmetries in the illiquid insurance exposures can reduce P(w) in our model be-
cause, for these risks, a continuous trading argument is not tenable. There is essentially
no trading in individual illiquid risks. This is what allows financial intermediaries and,
indeed, most nonfinancial firms as well, to add value. They originate and warehouse
illiquid assets and exposures, allowing them in the aggregate to be liquidly traded in
the form of company stock.

Proposition 4 allows for distributional asymmetries in valuation, but not by including
additional factors driven by skewness, or other higher-order moments, per se. The
problem with a moment-based approach is that there are, of course, an infinite number
of moments and the criteria for choosing among them can be rather arbitrary. The
advantage of our functional approach is that all of the properties of the asymmetric
distribution—in effect all of its moments—are contained in our single third factor.

However, there are also disadvantages to this analytic approach. Chief among them
is that we cannot easily allow for nonnormally distributed new opportunities. Our
method for deriving explicit solutions—the generalization of Stein’s Lemma—can be
applied to at most one nonlinear function of normals at a time. Essentially, there is no
general analytic solution for the covariance of two nonnormal random variables. Our
response is to assume that the new opportunities are distributed normally (and there-
fore symmetrically). This works, but leads to pricing errors when new opportunities
are asymmetrically distributed.

Consider, for example, an insurer exposed to asymmetrically distributed property-
casualty losses. An excess-of-loss reinsurance contract (essentially a call spread written
on the insurer’s underlying event losses) would commonly be used to cede the risk.
Such a contract would, of course, have a highly asymmetric payoff distribution. The
contract would be more valuable to the insurer than a contract whose payoffs were
symmetric (and normal) because the excess-of-loss contract would completely cede
the insurer’s event losses without adding any other risks, something that a contract
with symmetric payoffs could not do. By approximating the new opportunity payoffs
as normal, our approach therefore understates value if a positively asymmetric new

2 The distributional asymmetry could impact P(w) through the product-market channel as
well. For example, if the negative demand shocks associated with greater risk-to-capital
ratios negatively affected the return on future investments, F(I) = F(I; s2), G would operate
through the product-market as well as the capital-market channel. Indeed, an earlier version
of this article included such argument of F. It was dropped because, while probably accurate,
it added more to the model’s complexity than to its intuition.
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opportunity perfectly hedges preexisting exposures, and overstates value if there
are no preexisting exposures. Nevertheless, our contribution is to provide at least a
basis for pricing new opportunities that alter the profile of preexisting asymmetric
exposures.

Simultaneous Multiple New Opportunities

Thus far, in solving for the optimal quantity and hurdle rate for the jth new opportu-
nity, we have taken as given all the other | quantities and hurdle rates. It is as though
the insurer is considering a single new opportunity, having already fixed decisions on
the | — 1 others. Clearly, the optimal thing to do is to solve the | first-order equations
simultaneously. This is straightforward to do. To express the results, we use nota-
tion in which n* is a | x 1 vector of optimal amounts of new opportunities; ¥ is the
] x ] covariance matrix of the shocks of the unhedgeable insurance components, &} i’
wun is the J x 1 vector of total expected returns on the new opportunities; Cyy is the
] x 1 vector of covariances of the new opportunities with the market, cov(ey,;, M); and
Cnp is the | x 1 vector of covariances of the new opportunities with the preexisting
exposures, cov(ey, ir€ p). The vector of optimal investments in new opportunities is
given by:

1 G
* = N un — —(1 x! 1
n <F —i—G) (v — yCnm) ( + F —i—G) Cnp, (13)

whereas the vector of incremental required returns for an incremental opportunity is:
un = yCnm + (F + G)(Cnp + Zn) + GCnp. (14)

Both of these expressions are solutions to the J first-order conditions in Propositions 3
and 4. However, simultaneous solution makes the coordination problem among the
J individual decisions clear. The decision to hold more or less the jth opportunity
impacts the desirability of the other | — 1 opportunities. If the decisions must be
made simultaneously, a central planner would need to implement Equation (13). The
planner would need to collect all information on the ] opportunities and then mandate
the actions. Of course, in practice, such microcoordination is rarely even a goal, let
alone an actual achievement.

One reason that organizations do not attempt such coordination is that the individual
decisions are typically small relative to the firm-wide capital. In that case, coordination
is less important. We can approximate this above by treating each of the opportunities
as small. In that case, the hurdle rate in Proposition 4 can be applied independently to
each opportunity. That would imply that the incremental hurdle rate for an infinites-
imal amount of the ] new opportunities is:*

% Equation (16) has two distinct factors, rather than the three in Proposition 4. However, that
turns out to be a special feature of our simplifying assumptions and will not obtain generally. If
we were to divide additively the asymmetrically distributed disturbance, 1, into asymmetric
and normally distributed components, then three factors would be required to express the
hurdle rate.
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un =yCnm+ (F + G + G)Cnp. (15)

This expression further highlights the reason that we refer to the hurdle rates as “in-
cremental.” Usually, hurdle rates are independent both of the amount being invested
and of other investments. That is not the case here. The jth hurdle rate depends not
only on how much investment takes place in the other ] — 1 opportunities; it depends
also on #; itself. The hurdle rate in Proposition 4 reflects this directly through the sec-
. j . . . .
ond priced factor, cov(w, e ;) = cov(e}, + 3, niey;, ey, ;), which is a linear function of
all ] of the n’s and an increasing linear function of ;.

There are also inglirect effects of 1; on the hurdle rate. As n; increases, the factor load-
ings, F, G, and G will generally change as well. Thus, for example, if the insurer
takes a large, very risky position in one opportunity—even if this position is indepen-
dently distributed of all others—this will generally increase all the factor loadings,
and thereby make the firm less willing to take on other risks. This is what Froot and
Stein (1998) call a “firm-wide” risk effect: the distribution of internal funds, w, and
therefore the factor loadings, are affected by changes in n;.

Because uy,; is dependent on 7, the hurdle rate is applicable only to an incremental
new opportunity, where the contemplated opportunity is small and where 7; is the
amount already in place. That is what we mean by an “incremental hurdle rate for an
incremental new opportunity.” For a discrete opportunity of size 7;, one would need
to integrate the expression in Proposition 4 over 7; to get the hurdle appropriate to a
discrete-sized opportunity.

OPTIMAL CAPITAL STRUCTURE AT TIME O

We can now step back to time 0 and solve for the optimal capital level, K. A simple
tradeoff is at work: on the one hand, as noted above, higher K moves the components
of the insurer’s effective risk aversion, F, G, and G, toward zero. Propositions 3 and 4
show that, ex ante, the insurer can invest more aggressively in new opportunities that
promise an above-market return at time 1, hedge less with products that appear very
costly at time 1, and cut back on overpaying for and/or overhedging with products
whose chief purpose is to improve distributional asymmetries. All of these benefits,
of course, must be balanced against the higher deadweight costs, 7K, that come with
higher levels of capital.

To illustrate the first part of the tradeoff most transparently, suppose that the new
opportunity in question is a small one and that the other | — 1 decisions are fixed. In
this setting, a natural question to ask is how the insurer’s hurdle rate—as given by
Proposition 4—changes with K:

dun,;
dK

= (Fx + Gx)cov(w, ey ;) + Greov(ep, ey ;)- (16)

The first two factor loadings, F x and Gk, are unambiguously negative. If the covari-
ance of the new opportunity with the preexisting portfolio is positive, then this factor
will push the hurdle rate smoothly toward fair market value as the amount of capital
K is increased. It is a bit more complex for G, which will be negative (positive) for
negatively (positively) asymmetric risks. Generally, G will move toward zero from
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whatever side of zero it is on. Thus, any difference between firms with positive and
negative G’s will be mitigated by more capital.

As of time 0, the insurer’s objective function is to pick K so as to maximize V — K,
recognizing that V = V(w(up(n, K), n(K), K)). In words, K affects w directly through
the amount of financial slack that will be available at time 2, as well as indirectly
through its influence on the optimal choice of new opportunities, , and through its
influence on the product market expected opportunity set, xp. Fortunately, one can
use the envelope theorem to show that the solution to this problem can be written
simply as:

o? 1

Equation (17) has an intuitive interpretation. The insurer can hold another dollar of
slack capital at time 0 and pay the costs, 7, of carrying that capital. By spending the
additional deadweight cost, the firm earns two benefits. First, it benefits from the im-
proved product-market terms of trade. This is summarized by F % > 0—the marginal
impact on product market terms of trade of additional capital, holding risk constant.
Second, it benefits from the reduction in the expected costs of external funds. This is
summarized by E[EP[”—I}(_]l > 0, which is literally the percentage gain from substituting
for an expensive dollar of external capital the (now cheap) future value of an addi-
tional dollar of internal capital. The optimal level of K equates marginal costs against
marginal benefits.

In the limiting case where v = 0, there are no deadweight costs of holding capital,
so the insurer holds an arbitrarily large amount. As K becomes large, the expected
shadow value of external funds, E[P,], falls to one. This in turn implies that both G
and F converge to zero as well. The insurer behaves in a classical manner, making
pricing and allocation decisions according to a purely market-based model of risk
and return. In contrast, as t increases above 0, the insurer holds less capital, thereby
raising its effective risk aversion, and amplifying the deviations from textbook capital
budgeting principles.?

Notice also that the existence of product-market imperfections encourages the in-
surer to hold more capital than would be the case if there were only capital-market
imperfections. These imperfections make the insurer more risk averse, increasing its
demands for hedging and capital, and reducing its appetite to bear risk through asset
holdings or underwriting.

SOME IMPLICATIONS OF THE THREE-FACTOR MODEL

Adding the third factor—asymmetry—provides another channel through which
cross-sectional variation in firms’ appetite for risk management might be explained.

26 While G and G do not appear explicitly in Equation (18), both the concavity of P and the
degree of negative asymmetry of distribution of w have, all else equal, negative impacts on
E[P(w)].
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Consider, for example, financial firms with strong reputations and solid access to
capital markets. With a lot to lose, from a regulatory or legal scandal or a large loss,
they have negatively asymmetric distributions. We would expect such firms to be
conservative in a number of ways, including in their internal pricing. Such conser-
vatism is predicted by the asymmetry factor.

Small “growth” firms, by contrast, behave in just the opposite way. They are most likely
to have positively asymmetric distributions of their assets, which include growth op-
tions. These firms may appear more aggressive in their capital budgeting and internal
pricing, with surprisingly low hurdle rates, especially given their less durable access
to capital markets. More aggressive hurdles for firms with powerful growth options
would be predicted by the third factor.

The third factor also has implication for the pricing of risk in excess-of-loss insurance
and reinsurance contracts. These contracts commit the underwriter to paying for a
slice of losses, those between predetermined upper and lower bounds. The further
out are the upper and lower bounds, the more extreme is the interaction between the
negative asymmetry and other portfolio risks. Thus, the model predicts that insur-
ers and reinsurers, who warehouse catastrophic exposures, find it very expensive to
hedge them, at least among one another. In fact, there is evidence that realized prices
of reinsurance tend to become much more expensive relative to fair value as contract
retentions (i.e., deductibles) increase.” Taken literally, this suggests that more nega-
tively asymmetric exposures are most costly for writers to take on and most valuable
for cedents to shed.

ASYMMETRICALLY DiISTRIBUTED NEW OPPORTUNITIES

This last section modifies an approach, discussed in Froot and Stein (1998), for valuing
new opportunities that are asymmetrically distributed. This approach gives some
useful insight; however, it can be applied in the case of insurance exposures only
in rather limited circumstances, which we clarify below. To fix ideas, imagine that
a reinsurer has a new opportunity to write a very small amount of excess-of-loss
cover for the catastrophe losses of an insurer’s underwriting book. (The excess-of-
loss contract is similar to a call spread using standard options.) Imagine also that the
insurer has issued a capital market instrument with payoffs tied directly linearly to
its time 2 catastrophe results.?®

Let us assume that the price of the underlying instrument, ¢, follows a simple geometric
Browian motion with drift 8 and instantaneous standard deviation, v, between times
1 and 2:

de = 0e +vedz. (18)

% See Froot (1995).

2 Such an instrument is not really the same as what are usually called “cat bonds,” in that
it would not have a maximum or promised payment of interest and principal, but rather
payments that are directly linked to the catastrophe component of the firm’s underwriting.
It is closer to a market traded quota-share contract than to a catastrophe bond.
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From Proposition 4, the excess return that the insurer requires on the underlying
position is?

UNe = yCOV <M, ci_e) + (F + G)cov (w, d?e) + Gceov <£IIJ, df) . (19)

By Ito’s lemma, the instantaneous change in the value of the derivative, L, is given by:

v2e?
dL = (96L3+Lt+TLee> dt +veL,dz. (20)

That is, the derivative and the underlying have perfectly correlated instantaneously
normal innovations, implying that cov(dL, x) = cov(deL,,x) = L.cov(de, x). Apply-
ing Proposition 4 and using the linearity of the covariance operator then yields the
reinsurer’s required excess return on the derivative:

L, d d - d
UN] = eL <ycov (M, ;) + (F + G)cov <w ;) + Gceov (8%, ;))

L.
eL (tene)- @1)

The continuous-time formulation implies that instantaneous innovations in the price
of the derivative, dL, are normal, even though over discrete intervals, the distribution
of AL is not normal because the moments 4L in Equation (20) are changing over time.

Equation (21) says simply that the reinsurer’s required return on the derivative is
equal to the return required on the underlying times the elasticity of the derivative
price with respect to the underlying price, ef” . In the case of standard call options, for
example, this elasticity is always greater than one. Moreover, the elasticity is increasing
in the strike price of the call; e.g., more out-of-the-money options have greater price
elasticities with respect to the price of the underlying. The firm will require a higher
return for a call option with a higher strike price. In the context of our example, this
implies that the reinsurer will require a higher return on the excess-of-loss contract
than on the underlying. In addition, this required return is more sensitive with respect

toF, G, and |G|.

The advantages of this approach are several. First, it allows us to price the reinsurance
contract or, for that matter, any derivative written on an underlying illiquid instru-
ment. The continuous time formulation allows for us to write the new investment
opportunity as continuously normal, and therefore apply our pricing formulas. Sec-
ond, it makes it clear that the reinsurance contract will have payoffs that are more
negatively asymmetric than those of the underlying. Loosely speaking, the greater is
the negative asymmetry of the new opportunity, the greater is the reinsurer’s required
return.

% In this continuous-time setting, £5, should now be interpreted as the instantaneous innovation
in the rate of return on the insurance component of the preexisting portfolio.
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Proper caveats include the assumption that the underlying cat instrument is continu-
ously priced in the marketplace and is liquidly tradable. Also, as before, the reinsur-
ance contract must be very small. The assumption that expected underlying returns
are constant would fail if the position were large.

CONCLUSIONS

This article attempts to provide a detailed framework for the pricing and allocation
of risk by insurers and reinsurers. We find that internal pricing for these firms differs
from external pricing of risk in the capital markets because of imperfections. We build
on previous work by Froot and Stein (1998), where capital-market imperfections are
paramount, by adding imperfections that come from the product-market sensitivity
of customers to risk, and by adding features that allow for the pricing of asymmetric
risk distributions, a key risk feature facing insurers and reinsurers.

It is unclear whether the model results should be interpreted as positive or normative.
Certainly, they are positive in the sense that insurers and reinsurers are, in practice,
concerned with risk management and capital allocation. Managers and practitioners
do not need to be told that the Modigliani-Miller irrelevance theorems fail, and that
risk management can raise value. The results are also positive in the sense that they
provide a possible explanation for why reinsurance prices are so high (relative to
expected loss); why reinsurance prices for particularly large-scale catastrophic perils,
like Florida wind, are among the highest; why prices rise and quantities of reinsurance
supplied fall in the aftermath of large event losses; and why the highest reinsurance
layers often appear the most expensively priced vis-a-vis expected loss.

However, there are clearly normative aspects to the theory as well. Practitioners may
use cost of capital formulations that are derived in ad hoc ways and that are not
necessarily rooted in corporate value maximization. The theory may, therefore, have
prescriptive content. Yet the precise results are also sensitive to the nature of the capital
and product market distortions. So the approach may point in the right direction even
if the exact results vary based on the details of the distortions.

It would be desirable to extend the results to allow for asymmetries in the distribution
of new opportunity outcomes. Unfortunately, we cannot solve explicitly for nonnor-
mal new opportunity disturbances. However, we do not need restrictive assumptions
about any distributions in order to reach Equation (8), prior to the application of the
generalization of Stein’s Lemma.*® Thus, while we cannot solve explicitly for n; or
uy,;j if the jth new opportunity is nonnormally distributed, the first-order condition
in Equation (8) always applies.
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