

1420 Sheridan Road, Suite 1E
Wilmette, IL 60091-1848
Tel: 312-658-0200
FAX: 312-658-0202
© 2007 Lane Financial, L.L.C.

Trade Notes

Email:
MLane@LaneFinancialLLC.com
Website:
LaneFinancialLLC.com

April 20, 2007

That was the Year that was!
The 2007 Review of the Insurance Securitization Market
By: Morton N. Lane, President and Roger G. Beckwith, Vice President

The past 18 months of frenetic activity in the Insurance-Linked Securities (ILS) market seems to have come to an end. One is tempted to ask, is that all there is?

Is this a halt, or a pause that refreshes? The precipitating causes of the 2006 rush of activity were the losses from Katrina, Wilma and Rita. The end seems to have been precipitated by a) the absence of significant 2006 losses, b) the restoration of capital ${ }^{1}$ equilibrium and finally, c) the actions of the state of Florida to abandon private markets and to nationalize (is that the correct word for state level application?) catastrophe risk. The first two of these reasons are to be expected, the last is a bit of a shock to the reinsurance body politic. And, worse, it may have been entirely unnecessary.
Politicians were stampeded to action by high insurance prices within the state during 2006. However, a look at the chart

[^0]
why should they? It will reflect a new reality, as subsidizing Florida taxpayers will no doubt learn to their cost.

Figure 1 shows month-to-month price shifts, but the longer view is shown in price shifts since 1985 in Figure 2. It also tells a story that
seems to be worth reflecting on. The gap between peak prices and their subsequent softening is getting shorter. It lasted several years after Andrew, a couple of years after $9 / 11$ and seems to have corrected in one year post Katrina. Now, to be sure, some of this is due to the magnitude of losses in years immediately following large events, but some of it is also due to the ease of
stimulate more such solutions, freely entered into by risk takers rather than by enforced subsidies from ill informed taxpayers. Our review may serve as a record of what is possible in that direction. The paper reviews the 2007 deals, the price trends and the secondary market activity. The Appendix records some important statistics and case studies.

entry of new capital from the capital markets. ILS and sidecars ${ }^{2}$ are part of this new entry mechanism and this annual review details the ILS market's astonishing activity and innovation over the past twelve months (April 2006 -March 2007) ${ }^{3}$. $\$ 5.6$ billion of new ILS were issued, representing almost one-half of the hybrid capital (ILS and sidecars) raised post Katrina. That $\$ 5.6$ billion represents a 30% growth over last year; however, if only cat bonds are considered, the year-to-year increase is an impressive 87%. Moreover, this capital has a limited life-span (maturity) that can disappear if it is not needed, unlike equity capital which has to be permanently serviced. Hybrid capital is one reason the cycle is shorter. Florida residents should want more ILS not less. State regulators would do well to

[^1]
Transaction Overview

Aside from the sheer volume of ILS issued last year - \$5.6 billion - there are several features of last year's activity that are worthy of special comment. First and foremost nearly 30% of last year's ILS were from first time issuers. This is testament to the vitality of the market. It's not just the same issuers. The first time issuers included Catlin, Dominion Resources, Liberty Mutual, Endurance and Balboa. A second notable phenomenon was the fact that 70% of the issues came from "programs". A few years back we identified the beginnings of shelf registrations, wherein an issuer sought approval for issuance of more than he presently required, under a medium term note program, in order to be ready to respond to changing circumstances. Tracking those programs became a good indicator of potential pipeline supply. As of the present the available amount of pre-approved programs is several multiples of current outstanding. We will see many more ILS when circumstances require.

Third, as previously observed this is more than a "cat bond" game, cat bond being the popular name for deals that are exposed to pure natural catastrophes. That is why the term insurance linked securities (ILS) is used. In 2007, 20% of ILS were deals that exposed the investor to extreme mortality. The actual total of pure cat bonds was $\$ 4.4$ billion. Further, new perils such as winds in the Gulf of Mexico, earthquakes in

Mexico and winds in Australia provided an expansion of the peril set that investors were able to put in their portfolio.

Fourth, a significant amount of ILS matured in 2007. The new issue total included replacement of maturing issues as well as new amounts of exposure. As of the end of the first quarter of 2007 the amount outstanding in the capital markets was $\$ 8$ billion for cat bonds and in excess of $\$ 10$ billion for all ILS. The average maturity of these issues is now around three years. Significantly, had that amount been put into the traditional reinsurance markets, it would have been in the form of traditional annual coverage. Part and parcel of annual issuance is an insurance brokerage fee each year. That calculation has to be set against the investment banking fees charged to issue ILS. And given the comments above, there is considerable saving on legal fees through "program" issuance. Therefore, on balance we would contend that the placement of ILS has saved the issuers several hundred basis points. It is a more efficient market, cynics notwithstanding.

A fifth significant highlight of 2007 was its adaptability. Katrina had caused a great deal of loss and a great deal of statistical-model soul searching. Had the models been sufficiently accurate in allowing for a storm of Katrina's intensity? The upshot was an extensive model revision by all three modeling companies during 2006. That is, by AIRWorldwide, EQECAT and RMS. They all adopted a similar convention to capture their re-evaluation of the risk - they produced long term probabilities and introduced short term (or sensitivity) probabilities for certain risks and let the investors choose which to believe. The reason short term probabilities are given is because of either higher sea surface temperatures or because of the phenomenon of a decadal Atlantic Oscillation. Naturally, investors gravitate to the more conservative (short term) figures for their evaluation, as do we in our analysis, but both numbers are presented in Tables 1 (Long Term) and 2 (Short Term) in the Appendix.

Finally, in this overview it is worth noting that despite the popularity of multi-peril deals in recent years (they represented 45% of the deals in our 2006 analysis), they dropped to under 20% in the current analysis. In our 2006 analysis nearly all the exposure due to US wind was captured in the multi-peril bonds. This year, the biggest single peril demand was for US wind coverage with some $\$ 1.4$ billion issued. Combined with the wind embedded in multi-peril bonds, almost half the exposure was for US wind, perhaps not an unexpected result in the year following Katrina. See Figure 3 for details.
Figure 3

2006-07, $\$ 5.6$ billion Issued

\square Trade Credit	\square Auto Insurance	\square Liability	\square Mortality
\square Euro Wind	\square Pacific NW EQ	\square California EQ	\square US Wind
\square Japan Quake	\square Mexico Quake	\square Multi-Peril	

originally proposed a four tranche transaction, with some confusing labeling, but ended up only issuing two tranches and only for a total amount of $\$ 122.5$ million. Residential Re represents one of the persistent issuers of indemnity cat bonds. Figure 2, Appendix, shows how much indemnity issuance has dropped as a fraction of total issuance since the mid-nineties. It is not popular. This is especially true following the loss from Kamp in 2005. It appears that the capital markets put a premium on Res Re, and USAA responded by choosing not to pay that premium. Of course, that is part of the intelligent strategy. Get your coverage from both the traditional and capital markets and favor the one with the better deal.

Figure 4

peril - Mexican earthquake. Evidently, the market appreciated the diversification benefits, paying up so that FONDEN got an incredibly good price.

The transaction was issued via the auspices of Swiss Re Capital Markets and Deutsche Bank Securities. Mexico required coverage for three areas (boxes) of earthquake exposure. They also wanted instant liquidity of payment in the event of a loss. A parametric trigger was designed based upon the epicenter of an offending earthquake and its depth.
Verification of an eligible event will be very quick and payout, fully funded in a special purpose vehicle, will be immediate.

The entire transaction included a corresponding cover in the traditional market, actually twice as much as the cat bond. This is an interesting role that Swiss Re Capital Markets has also filled elsewhere. It places itself between the issuer and the capital markets. Sometimes that position is exactly matched as in the CAT-Mex case, and sometimes they take a basis risk. CAT-Mex will undoubtedly prove to be a harbinger for other government sponsored cat bonds. The World Bank is currently working on coverage for the wind and earthquake exposure of the governments of the Caribbean ${ }^{5}$ basin. The Bank aggregates the risk of several governments and while this placement may well be in the traditional markets, it is parametric and there is no doubt that this and other exposures will be placed in the capital markets in the future.

Australis II

Another bond which brought a rare peril to the capital markets as it did originally in 2006 was Australis Re. The peril was Australian wind typhoons - and Australian earthquake. The markets responded in similar fashion to the way it did to Cat-Mex, again according it a very aggressive price. Some cat bond investors will pay up for diversification especially in the highly rated universe. That same motivation does not

[^2][^3]extend to all hedge fund participants, especially for lower rated risks.

Drewcat Capital

The third new peril bond, and new issuer, was Drewcat. The insured was Dominion Resources with considerable exposure in the Gulf of Mexico. Lehman Bros was the investment banker. In 2005, companies with drilling rigs and pipelines in the Gulf lost an awful lot of money to Katrina, Rita and Wilma. It was unexpected (i.e. not priced in) and just as elsewhere marine coverage cost rocketed. The capital markets were explored. Several private deals were done but only two surfaced in the semi-public ILS markets. These were Grand Isle and Drewcat. They were not as successful as the private deals. Nor, it must be said, as the sidecar Petrel Re sponsored by Validus. Despite the fact that it was a new risk with a high premium, and despite the fact that both Grand Isle and Drewcat were parametric deals, they did not do well. In the end only $\$ 50$ million of the Drewcat deal was sold.

The coverage in Drewcat was for three boxes in critical locations in the Gulf and loss was to be determined by the incidence of high recorded wind speeds in the boxes. Any of the boxes could exhaust the limit, but the maximum loss would be the determinant in partial loss situations. EQECAT provided the modeled expected loss, and there is some reason to think that investors were suspicious of any new models for the Gulf. More likely was the fact that the Gulf wind risk was seen as an accumulating risk rather than a diversifying risk. Accordingly, the price was high. However, it was not as high as the casual observer might believe looking at the details in Table 2, Appendix, i.e., a 20.5 \% coupon for an expected loss of 1.54%. Remember, the deal was for less than twelve months although the expected loss was for the season. The actual rate on line paid would be the seven months of premium, accrued at the annual rate, divided by the expected loss - a multiple of 7.7, high but not out of line.

Mystic Re

Liberty Mutual joined the ranks of ILS issuers in the last 12 months. It also joined the
growing class of insurers using the market. Its initial program was for total issuance of $\$ 750$ million of which it has issued $\$ 525$ million in three tranches, the first A tranche in June and a subsequent issue of A and B tranches in December. All classes cover North East hurricane risk, and while this was not an entirely new peril for the ILS market it was a welcome reappearance. It was somewhat surprising, then, that it did not get lower premiums for scarcity value.

Eurus Ltd.

The peril covered in the Eurus cat bond was Euro wind in the UK and Europe. Eurus was issued by Hannover Re, not exactly a first time participant in the ILS market because of their long time presence in the sidecar market, however it may be the first formal cat bond by them. Hannover is clearly a company that has managed their capital very efficiently through the use of capital markets. Eurus investors suffered an early scare from the appearance of storm Kyril in northern Europe in January; the bond was put on ratings watch, but they are likely to survive that storm unscathed. The premium was 625 basis points on an expected loss 1.56%.

Cascadia II

FM Global issued their second cat bond for coverage of Pacific North West earthquake. It was one of the few deals that was not part of a program. Interestingly, the premium paid was 400 basis points for an expected loss of 0.76%. In their inaugural issue in 2005 the price was 300 basis points on an expected loss of 0.71%. This seems to be a case of unfortunate timing (August) in a tight market. One would normally expect rarer perils (Pacific North West quake) to enjoy a scarcity premium rather than the reverse.

Shackleton Re
Endurance Re became a first time issuer with Shackleton ${ }^{6}$ Re. Interestingly, Shackleton Re

[^4]was issued in three tranches, only one of which, the A tranche, was as a cat bond. The other two tranches were described as "term loans". The term loans were to all intents and purposes identical to senior tranches of cat bonds, with expected loss measures and similarly priced premiums. Obviously, as loans they are not securities and do not have secondary markets, and are not quoted on any of the price sheets. In many respects these loans are similar to loans made in sidecar arrangements. The coverage in Shackleton A (the cat bond) is for California earthquake. The two loan tranches were for US wind and for second event of either wind or quake.

Redwood IX

Another of the regulars among cat bond issuers is the Redwood series. We are on the ninth one, although sometimes two issues have been made in the same year. All issues are associated with a layer of the California Earthquake Authority (CEA) but the CEA does not issue directly. This year, in something of a departure, Redwood IX is issued with 5 tranches. For tranches A, B, C, D and E the amounts raised were respectively, $\$ 125$ million, $\$ 125$ million, $\$ 18$ million, $\$ 20$ million and $\$ 12$ million. Evidently the issuer was tapping into and accommodating different risk appetites in the capital markets. Confusingly, perhaps, the junior tranche was the E tranche, but the most senior was the C tranche. In a further departure the index of loss will be calculated using USGS measures, making this deal a pure parametric deal. It is likely that some of these tranches and changes were designed to

Shackleton survived, with all hands, after incredible obstacles. It is a truly inspiring story. Unfortunately, the Endurance was crushed in the southern ice. We are sure that the naming of Endurance Re was intended to allude to the inspiring part, not the demise of the ship. It reminds us of the story that Clem Dwyer used to tell about leading Marsh McLennan's first venture into the cat bond and ILS markets in the mid 1990's. He said he felt very excited, and described himself as like Magellan voyaging off to new worlds and the first global circumnavigation. It was only later, he said, he realized that Magellan did not make it, although his voyage was a success, an outcome that mirrored his own.
accommodate specific investors, a perfect example of how the capital markets can influence insurance structures rather than the reverse.

Lakeside Re
Munich Re made a return visit to the cat bond market two times in the last year. Their previous issue, Prime, was one of the largest of issues but it had matured in January 2004. Lakeside Re was issued to cover California earthquake risk for the next 3 years. Rated BB+ the bond paid 650 basis points over LIBOR and had an annual risk of 0.42%.

Carillon Re
Munich Re's second foray into the markets was a small program to cover US wind in the Gulf and East coast. Three tranches were issued. Two, A-2 and B, have already matured, having been issued only for the wind season. The A-2 tranche was a proportionate payout, the B tranche binary. Of note is that these two were issued on a discount basis, in the manner of US treasury securities with maturities less than one year, i.e., T-Bills vs. T-Notes. Thus, A-2 had a discount price of 90 and B had a discount price of $841 / 8$ th. Obviously the yield-equivalent price is higher that the complement of the price, 10% and 15 7/8ths respectively, because the investor put up less cash. The first bond Lane Financial LLC was involved with in 1996, Reliance Re I, was issued on a discount basis even though its term was longer than 12 months, but the practice has not been repeated until now. Actually, it is not just in Carillon that we have seen its reappearance. During 2006 most sidecars were funded only to the difference between the limit and the premium, and that was also true of certain private transactions as well. In part this may have been the result of some very high premiums where the consequence to the investor of putting up the full limit or the discount amount can be dramatic.

In the third tranche issued by Munich, the A-1 tranche, the term was for three years. It priced at 1000 basis points for an estimated expected loss of 1.79%. Intriguingly, Munich may not have been sure that they wanted the coverage for more than one season, perhaps at paid prices,
because they built in certain call ${ }^{7}$ provisions that would allow them to cancel early. The bond allowed for calls in September, December or March at call premiums of 7.5\%,5.0\% and 2.5\% respectively. All deadlines passed without call, perhaps indicating that while pricing may have softened it was not enough to compete with refinancing and call price.

Vasco Re
Balboa Insurance Company represents several smaller insurers; it is owned by Countrywide. Its inaugural ILS issue was named Vasco in honor of its sponsoring company's full namesake (Vasco Nunez de Balboa, who was the Spanish explorer first to stand on the eastern shore of the Pacific.) Balboa planned to issue three tranches to raise $\$ 150$ million covering Gulf and East coast wind. It chose to issue an indemnity bond and may have suffered, as did USAA, in that loss measure's unpopularity in the capital market. In the end, only $\$ 50$ million of one tranche was issued at a premium of 850 basis points on an expected loss 0.82%. Maybe like its namesake it failed to get the big prize. Vasco ended up beheaded, and naming of the Pacific fell to the aforementioned Magellan.

Fhu-Jin
Tokio Marine Insurance Company issued $\$ 200$ million of collateralized cover against wind risk in Japan under its Fhu-Jin program. Tokio Marine set the standard for parametric securitizations some 10 years ago with the eponymous Parametric Re for Japanese
${ }^{7}$ The matter of call provisions cannot pass without some reference to Atlantic and Western II, PXRE's last issued cat bond. A\&W II was based on a modeled portfolio that PXRE was obliged to service, even though if was effectively forced to exit the corresponding lines during 2006. In order to cancel and avoid the interest obligation PXRE had to pay a substantial call premium to cancel the bond. Investors were thereby somewhat compensated for early termination. It is likely that investors will want to insist on some call premiums in all bonds going forward, having experienced PXRE and before that, in 2004, the exit of Converium from covered lines. They are now sensitized to the possibility of issuer default or demise.
earthquake. Fhu-Jin now sets similar standards for Japanese wind. The payout is based on a parametric index that takes the average wind speed at 10 minute intervals from 900
metrological stations in Japan. Unlike some of this year's other parametric deals the price was a good one -390 basis point on 1.24% expected loss.

Foundation II

Hartford Insurance started its second program last year, having done its inaugural issue in 2005. The second program was for up to $\$ 750$ million of which tranches A and G were issued for $\$ 180$ million and $\$ 67.5$ million, respectively. The A tranche covers Gulf and East coast wind on an occurrence basis. Tranche G, on the other hand, is an aggregate cover. It includes US wind and US earthquake as well as US tornado and hail. Evidently, Hartford has exposure all over the US including mid-west tornado - a risk not seen since the days of the CBoT indices. Anyway, the G tranche aggregates all PCS measures (customized for Hartford) counting all event losses greater than $\$ 100$ million and less than $\$ 29.5$ billion, provided no single event contributed more than $\$ 150$ million to the loss. One can deduce that Hartford has coverage on an event basis above $\$ 30$ billion, because these kick out of the G tranche.

Bay Haven Ltd.

Most cat bonds address coverage for the severity of a loss. It may be sliced into various layers and tranches but generally they will all be concerned with severity. Bay Haven is concerned with frequency instead. Of course, it is not entirely alone in considering frequency. Second event covers such as the (term loan) C tranche of Shackelton Re, or Atlas III, and also the aggregate cover Foundation II G tranche address some aspects of frequency. Bay Haven, on the other hand, specifically addresses large event severity. It specifies 7 large event definitions for US wind, Euro wind, Japan wind, and UK wind together with California quake, New Madrid quake and Japan quake. The definitions are such that the average annual probability of any one event occurring is around 4%, although it is heavily skewed by the US wind event (at $\$ 183 / 4$ billion

PCS measure) which is about 4 times that average. The coverage is for 6 events over a three year period excess the first 3 qualifying events. A binary payout is made for each eligible event. The coverage is then divided into a senior piece, the A tranche, the last 4 events, and a junior piece, for the $4^{\text {th }}$ and $5^{\text {th }}$ events. Obviously the size of the A tranche is twice that of the B tranche since all event payouts are of equal size.

Catlin is the sponsor and ABN AMRO the investment banker on this novel transaction. ABN AMRO says that this is not a cat bond but a CDO. The distinction is made to access a different class of ILS investors, namely CDO buyers. Each event is covered by a "Natural Cat Swap" such as those traded by Swiss Re Capital Markets or by Deutsche Bank. Also, the tranching is similar to credit CDOs that cover, say, the second default out of a portfolio of 10 credits. To us that seems an unnecessary distinction, but what this does underscore is the continuing convergence of insurance and capital markets not only in their form but their substance.

As a cover that depends on other preceding events we can also call this a contingent cover and they are worthy of some special comments. (We have made these before see last year's Review). Contingent covers that do not have contingent payments run the risk of having severe mark-to-market downgrades as contingencies erode - see, e.g., what happened to Phoenix Quake Wind II. In Bay Haven the same is liable to happen. If, for example, Kyril had been a more devastating storm, the B tranche holders would be one event closer to the fire and the deal would be worth a lot less. ABN says that this "credit migration" can be orderly - and illustrates how in its marketing material - but that may be little comfort to a mark-to-market fund investor. To see further illustration of this effect follow the description of Avalon below. Avalon has still to suffer a loss but has been severely marked down. Avalon covers the frequency of excess liability claims, three excess of two in ABN speak.

The traditional reinsurance market handles these frequency covers differently - by making the payments contingent. This is done most notably in re-instatement provisions in ILWs or traditional covers. A re-instateable cover does not charge for the second event until the first has happened. A similar payment mechanism was
used in Lane Financial's 1998 optionable note ${ }^{8}$, Reliance III, the Allianz 1998 Gemini option with option payments rather than prepayments and the Converium Trinom transaction. The full onrisk payments are made only after the event risk deductible is eroded. To be sure, there is a credit risk but it is a manageable one. Most importantly, a two-stage or contingent payment, whether by option or not, avoids after-market security valuation. Calling it a cash flow CDO does not, we think, avoid the problem.

On the other hand, the disadvantages of mark-to-market can accrue to the sponsor of the deal if he has bought cover in derivative form, e.g., in swap form, as Catlin has done in Bay Haven. As deductible events occur, the mark-tomarket price falls. This is a disadvantage to the investor but to the sponsor it represents a benefit - he sold something at $\$ 100$ that can be purchased at $\$ 90$. That will be taken into income, offsetting any perceived increase in the cost of protection. Over time, of course, if no further events occur the mark-to-market will rise again to par. This process can represent an income smoothing to the sponsor. Much more about these effects will be discussed in future papers but for the present review suffice it say that the effect will not occur if the sponsor has bought a reinsurance as opposed to a derivative cover. We will see this in the secondary market discussion of Avalon below. To get the benefit in this circumstance the sponsor will actually have to buy back the issued securities.

Atlas III

SCOR made its third visit to the ILS market with a $€ 120$ million issue covering second events from either Euro wind or Japanese quake. The coverage was for 3 years at a rate of 400 basis points over LIBOR. See comments in Bay Haven for the mark-to-market risks.

Calabash Re

Swiss Re Capital Markets is a registered broker dealer working on behalf of third parties

[^5]as well as its parent's exposure. As such it competes with the likes of Goldman Sachs, Lehman Bros, BNP Paribas and other investment banks. Too often it gets confused in the public's perception that its role is purely for the benefit of Swiss Re. It does not get enough credit for its third party activity. Calabash may change that perception. It was issued by Swiss Re on behalf of ACE America, who one might otherwise expect to use a non insurance related investment banker.

Further influence of Swiss Re Capital Markets can be seen in the program it constructed for ACE America. The program is almost a mini version of the very successful Arbor or Successor programs, although it came out a little earlier than the full blown Successor. It contains five classes (A through E) and two levels of series. The classes are for US wind, California quake, Central and North West quake, US quake and finally, all of the above. The two series in each class are Series 1 on an occurrence basis and Series 2 on an aggregate basis. The loss measure is a modeled portfolio. In May, $\$ 100$ million of the A-1 series was issued. The modeled portfolio is heavily
modeled portfolio. Exactly similar classes were allowed but only for the occurrence series. On this occasion, $\$ 100$ million Class A, $\$ 50$ million Class D and $\$ 100$ million Class E were issued at prices of 840,960 and 1090 basis points, respectively. The second program attached at a slightly lower level than the modeled portfolio in Calabash Re.

Successor

The biggest deal of the year and the biggest program was Swiss Re's Successor program. It was named no doubt for the fact that it succeeded the Pioneer and Arbor programs. In June 2006 many of those issues were maturing and so Swiss Re redesigned their program (they could have issued anew under their old programs) and used Successor to replace them. Approximately $\$ 700$ million of the old deals matured and this was replaced by nearly $\$ 900$ million of the new issue. Since June, new open window transactions in August and December have increased the outstanding of Successor to $\$ 1.2$ billion.

Table 1

weighted to Florida (92\%) with 42% of that concentrated in Miami Dade County.

Calabash Re II

Later in the year a second program was approved, presumably with a slightly different

The deal offered investors an incredible menu of alternatives, certainly enough for them to shape their own portfolios if they chose to do so. The perils were familiar enough, US wind, California quake, Japanese quake and Euro-wind. However, in an intriguing twist the investor was offered not only the chance to choose his level of
attachment (preferred riskiness), but also whether the risk should be parametric, industry or modeled. Successor came at the same time as the reluctant reception of the Res Re indemnity bonds, so this presented a chance to gauge price differentials, if any, between indemnity and parametric risk. The market chose parametric. Intriguingly, Swiss Re also offered one tranche that had a kick-out character to the risk. In other words, as losses rose the payout from the investor rose, but if the losses exceeded a certain size the investor payout dropped to zero. The attraction of this tranche was that it allowed investors to assume a risk that did not accumulate with concentrations of risk they may already have from high level coverages elsewhere.

Finally, to satisfy multi-peril investors Swiss Re offered combined risks in any number of combinations again to tap markets of investors who were trying shape their portfolios of exposures. The complexity of offerings can be seen in a matrix in Table 1 above. In this table the individual or single peril tranches are listed in the left hand column and the multi-peril tranches are listed along the top. Reading the matrix, for example in the Successor V A column, it should be clear that this bond is exposed to California quake, Japanese quake and Euro wind, all at the A tranche level. Successor V B on the other hand is exposed to the same set of risks, but at the B tranche level. In the end no one subscribed, or did not find a clearing price for these particular bonds, but they may do in the future. The exact issuance in each tranche is captured in the Appendix in Table 4. This shows that investors chose to underwrite $\$ 1.2$ billion of Swiss Re's exposure including almost $\$ 300$ million of multiperil offerings.

From Swiss Re's point of view they gained coverage so that as much as the following amounts could be recovered from each peril: \$575 million of US wind, $\$ 303$ million of California quake, $\$ 466$ million of Japanese quake and $\$ 658$ million of Euro-wind, roughly half a billion in each peril. Not bad for a program that some people sneered at a few years back when consecutive issuances were of the order of $\$ 20$ million a time as not worth bothering with. Exactly how that growth has occurred in the case of US wind is shown in Figure 6, Appendix. This graph overlays the cumulative Pioneer, Arbor and

Successor issues since inception. It is impressive to say the least.

Non-Cat ILS - Life

Osiris

AXA issued its first extreme mortality bond in November 2006. Named for the Egyptian God of life, death and fertility, it covered extreme mortality in France, Japan and the US. Its initial program has authorized a potential issuance of $€ 1$ billion. Extreme mortality is defined as a departure from expected mortality statistics, from whatever cause, by more than a specified \% over the base years of 2004 and 2005. The loss is for the worst two consecutive years in the term of the note. This may include loss of life from terrorism, bird flu or pandemic. The threshold levels for each tranche are $106 \%, 110 \%, 114 \%, 119 \%$ for classes D, C, B and A.

Interestingly, the tranches were offered to a Eurodollar universe (Classes B-1 and B-2) and to a dollar universe (Classes C and D). Also, the Eurodollar investors were able to take the bonds with a financial guaranty (AAA rated) paying 20 basis points or on a non-guaranteed basis (Arated) paying 120 basis points. Twice as many chose to take the wrap, which perhaps shows that this market is still young. US investors, on the other hand, took no guarantees and lower attachment points to receive coupons of 285 and 500 basis points on classes C and D, respectively.

Vita III
Swiss Re issued its third version of its extreme mortality needs in Vita III. This program covers mortality in Canada, USA, UK, Germany and Japan. It has made two issuances, in December and January, for an equivalent total of $\$ 711.15$ million dollars. Like the Osiris issue it is possible to buy the Vita III bonds in Eurodollars or in dollars, on a wrapped or non-guaranteed basis and for different maturities of 4 to 5 years. And, similar to Osiris the loss measure is for two consecutive years above the specified thresholds. In Vita's case the levels are $110 \%, 115 \%, 120 \%$ and 125% above the 2004 and 2005 base levels. Wrapped prices were around 20 basis points;
unwrapped senior pieces were 110 basis points. Most takers took the wrapped tranches, perhaps because that market is larger and perhaps because those buyers had been attracted to prior Vita offerings but had passed because of the lack of a AAA rating.

It is interesting that now there are at least two life insurers who want to reduce their capital requirements by reducing their extreme mortality exposures. As more and more companies are being forced to evaluate their liabilities on a stochastic basis we expect more companies to join the ranks of issuers. As more issues come forward investors will want to start to observe their accumulations more accurately, as they do in cat. While a pandemic can affect all zones, terrorism is more localized. It will be interesting to see the emergence of modeling in this area.

Secondary Markets and Pricing

We forego our usual practice of fitting models to all ILS current prices to instead concentrate on two aspects of last year's activity: contemporaneous pricing and opportunities in the secondary market. In short, we focus on Successor and on Avalon. One of the defects we have always known about in our model fitting exercises is that they either used all issue prices during the year, in which case intra-year shifts would be lost, or they used contemporaneous secondary market prices, in which case they risked using out of date expected loss information, which is strictly accurate only at the moment of issue. Notwithstanding these defects, in most years there was no significant intra-year price shift and by measuring at the end of the first quarter we avoided the seasonal movements in expected losses that could distort our models. The first quarter is after the Euro wind season and before the US wind season. Our models, while not completely accurate, were pretty good and certainly accurate enough for government work. We did, however, long for a more robust market to get better handles on prices. The last twelve months have given us the opportunity.

Successor, as described above, gave us a raft of issues that were priced simultaneously and so allowed us to get a one time insight into pricing. Unfortunately, or perhaps fortunately,
that one time insight occurred at the peak price point in the market, June 2006.

We can, nevertheless, use fits made at that time to illustrate maximum prices that might exist in any future market. The result of our fit is shown in Figure 5 and is listed in Table 2. And we are fortunate, indeed, to be able to separate out the models for each of the perils. This is something that was difficult to do without dummy variables in previous year's analysis. Note also that we have confined our fitting exercise to what we have previously called the Kreps and Major model from their successful use of it for reinsurance pricing. It is the log linear model using expected loss as the independent variable. We have not abandoned our attempts to isolate the expected loss and second order influences on price through the use of the LFC model, but it is not the focus of this year's analysis.

Figure 5 shows three relationships, for US wind, Japan quake and Euro wind. Any other issuer observing those relationships at that time had a pretty good idea of what price he could command. Note that these are based on the short term probabilities, although they are as easily obtainable using long term ones as well. (Notice also that the multi-peril deals, the Successor series, lines up pretty well with the US wind model although it was not part of that fit.)

By the end of the first quarter prices had drifted lower from the June highs. To capture the current relationship we use our old trick and use secondary market prices, again taking refuge in the fact that expected loss rate in March will not be too far from issue rates. The relationship is shown in Figure 5 which is placed alongside the June fit. To further stress the decline consider Table 2 in which we trace out the price implied by the two models, in premium and in multiple terms, for several levels of expected loss. There has been a price decline, but it occurs more in non US wind than in US wind. Evidently there is still wind demand, or at least a caution that there is still a lot of wind risk to be covered. Investors or underwriters have, therefore, tried to mitigate the US wind risk by bidding up the prices of the other perils, in this case Japan quake and Euro wind. The effect (a price drop of 20%) is quite dramatic; after all there have been no significant losses in

Figure 5

Table 2
Shift in Fitted Price Curves of Successor Issues

	Jun-06		Mar-07	
	Gamma	Alpha	Gamma	Alpha
Hurricane	486.48	0.7688	419.13	0.8368
Euro Wind	430.55	0.7243	326.33	0.6796
Japan Quake	347.87	0.7246	240.63	0.7912
Exp Loss\%	2	4	6	8

Euro Wind				
Jun-06	711	1175	1576	1941
Mar-07	523	837	1103	1341
	-26.52%	-28.76%	-30.04%	-30.93%

Japan Quake				
Jun-06	575	950	1274	1570
Mar-07	416	721	993	1247
	-27.56%	-24.14%	-22.06%	-20.55%

Multiples implied by Fitted Curves

Hurricane				
Jun-06	4.1	3.5	3.2	3.0
Mar-07	3.7	3.3	3.1	3.0

Euro Wind				
Jun-06	3.6	2.9	2.6	2.4
Mar-07	2.6	2.1	1.8	1.7

Japan Quake				
Jun-O6	2.9	2.4	2.1	2.0
Mar-07	2.1	1.8	1.7	1.6

either zone so demand for coverage has been static.

We have qualms about the quality of secondary market price information in quiet markets, of which more below, but contend that the information contained in these models is still superior to much of the speculation about where prices are. For one thing secondary markets can

[^6]Figure 6

to be the conservative thing to do. (See the pink highlighted bars for the shifted coupons.)

The table also assumes no loss to a current investment and return of principal at maturity, with no extension.

Notice, finally,
that the yield to maturity and the internal rate of return are both calculated. The former is generally the number that is quoted for bonds.

While the
Table $3{ }^{10}$ shows the returns that can be expected from a current purchase of the Avalon tranches. It lists the coupons to be received by the holder of the securities in future quarters (over and above LIBOR) but notice that the coupon changes.

In the original specifications there is a provision to revise the interest rate received if the underlying exposure of the subject portfolio of OCIL changes. This could be the case if the OCIL membership changed, if the assessment of risk changed or if the underlying policies changed. Evidently, during 2006 such changes occurred and the calculator firm, Paterson Martin, changed the premium due (interest payable). This is always an item to consider with multi-year deals. The A tranche exposure went up by 12%, the B tranche by 18% and the C tranche by 23% according to the coupon shift. That adjustment took place in June 2006 and apparently caused the last great down shift in prices. Investors apparently had not expected such a big shift.

In Table 4 we have assumed that the same shift in coupon will take place this year. It seems

[^7]ground-up level to the industry. There was also an estimate of severity of loss; approximately 90% were less than $\$ 50$ million. We also know that OCIL writes policies excess $\$ 50$ million, so that not all ground-up claims inure to it.

Furthermore, of the claims above $\$ 50$ million only about one third are expected above $\$ 100$ million so that most of the time even when there is a claim, it will not be a limit loss. Indeed, in their original documentation of losses paid in the preceding 18 years, of which there were nine, none was a limit loss. The average was $\$ 44$ million.

Table 4

| Range of Expected Losses
 implied by Current | | Prices | |
| :---: | :---: | :---: | :---: | :---: |

That said, the two recent claims appear to have been limit losses.

The question remains how to asses the remaining risks? Given the exposure base shift it seems unrealistic to re-simulate the layers based on original data.

The rating agencies are one place to start. They, at least, are shown recent data. The revised ratings are $B+, C C C, C C C-$, respectively, and the default rates associated with those letter ratings are "approximately", $3.6 \%, 15-20 \%$, and $20-25 \%$. The word has to be "approximately" because the agencies are quite loose with the numbers for CCC level risks. And, depending on the agency, some refer to default probabilities - others talk of expected loss. Finally, by way of final caution with using the rating agency as risk assessor the last adjustment was March 22 of 2006. Ratings were not revised after the coupon adjustment and have not been revised since.

Another approach to risk assessment is to try to gauge what the market is implying. By looking at the pricing of the other securities at mid-year and presently, the following table lays out potential market implied risk.

The implication of the two risk estimates is that the C tranche risk could be anywhere from 25% to 60% for which the reward would be 98%. On the other hand, the B tranche seems to be more consistently estimated to have a risk of around $15-20 \%$ for which the reward is 35%. Also,
with the B tranche there is less risk of extension see below.

OCIL has the right to extend the time at which they release funds to investors. Ordinary maturity is June 2008, three years after issue. If no loss events or claims occur OCIL will return funds to investors at maturity. However, if claims occurred during the on-risk period that OCIL believes will develop to a size that would penetrate one or all of the tranches, it has the right to extend the date of final repayment. It can extend any of the tranches for three months, but the process can be repeated up to eight times, for a total of two years.

There are two types of extension, Type I and Type II. Under the first type OCIL can extend at their discretion. However, if they so elect they must pay the A tranche holders full coupon, and if they extend the B and C tranches they must pay a coupon of 2.5%. Obviously, the intent of the coupon payment post risk period is to prevent capricious extension. The second type of extension allows a lower coupon payment of only 10 basis points by OCIL, but can be enacted if and only if the estimate of losses is 75% of the tranche attachment point.

What this means is that as of now, it is estimated that both Murphy Oil and Buncefield are full limit losses, i.e., $\$ 300$ million. Accordingly, tranche C can be extended by a Type II extension if OCIL desires it. However, for tranche B a further loss of $\$ 37.5$ or more million must be independently assessed to have happened to allow a Type II extension (75% of $\$ 450$ million equals $\$ 337.5$ million).

As of now we can perhaps conclude that the senior tranche will not be extended, that the junior tranche will be extended under any significant claim and that for the B tranche there will have to be one or more significant events that lead to a full limit loss before it is extended. Unfortunately, OCIL has discontinued the practice it started just after issue of posting claims to its web site, although presumably it provides this to bondholders. Secondary market buyers will want to receive that information before consummating any deal.

Extension can still occur and not cause a loss. Assuming there is an extension for the full two years and no loss, this affects the returns as shown in Table 5.

Our analysis of Avalon has been rather long, but it serves to illustrate the gyrations that investors will often have to go through to make value judgments in an after-market. OCIL itself could have made these judgments and bought back the bonds at their lowest points (effectively getting 70% of their limit with or without a loss!) but they chose not to. However, in order to

Table 5
Internal Rates of Return under different, no-loss repayment scenarios

At maturity	IRR	$\mathbf{1 0 . 7 6 \%}$	$\mathbf{3 8 . 8 6} \%$	$\mathbf{1 4 4 . 4 2 \%}$
Type I	IRR	$\mathbf{5 . 8 2} \%$	$\mathbf{1 5 . 8 1 \%}$	$\mathbf{4 8 . 6 5 \%}$
Type II	IRR	$\mathbf{4 . 1 4 \%}$	$\mathbf{1 3 . 9 7 \%}$	$\mathbf{4 5 . 8 4} \%$

promote a liquid secondary market it is in the interest of companies to disclose as much as possible to reveal the true price of risk. Failing to provide information in the after-market does not promote this.

Concluding Remarks

The total outstanding ILS as of April 1, 2007 is $\$ 10.3$ billion (no fooling). This is quite a benchmark. Eighty percent of this total is natural catastrophe risk; the largest part of the remainder is mortality. Put another way a clustering of catastrophic events could cause the capital market a $\$ 10$ billion loss. This is a far cry from the market as it was ten years ago. Then the market had less than one billion annual issuance. It has been a long time coming but believers expect that sort of growth to continue. One such believer is Jacques Aigrain, CEO of Swiss Re. In a January speech ${ }^{11}$ observed that the compound annual rate of growth of the last 10 years has been 39.75%, and assuming a future compound annual rate of growth of 25% to 40% the next 10 years, he foresees a market size of between $\$ 250$ billion to $\$ 750$ billion ${ }^{12}$. While our own estimates are optimistic they are not as bold as that. Then again, Aigrain also has the power to be self fulfilling, which we do not - more power to him.

There are other reasons to be optimistic about the ILS market, even if we are in pause.

[^8]One reason is the new deals currently in the market which will fall outside of our review period. This plus the "pipeline" promises to make 2007 a \$3-4 billion issue year, assuming a normal loss year. A second reason is the proliferation of new ideas for trading insurance. Within five months of hurricane Andrew in 1992 the Chicago Board of Trade (CBoT) listed a futures contract based on an index of insurance losses measured by the Insurance Services Office (ISO). That contract morphed into a Property Claims Service (PCS) measured option. Activity was slow, but an idea was born. Specifically, the CBoT contracts traded for 5 years and assumed an aggregate risk of \$100-250 million of risk over the five years. The contract died in the soft, soft market of 1999, but also because of the lack of nourishment by its parent, the CBoT itself, whose attention was focused elsewhere. Before it died the CBoT attracted imitators: Catex, the Bermuda Commodity Exchange, a Guy Carpenter index ${ }^{13}$. Even the Industry Loss Warranty (ILW) market can trace its take-off to the exchange years. Each of these vehicles had a different idea of what would succeed with users, but in the end they all, except ILWs, succumbed to said soft 1990 market.

Now history is repeating itself.
Eighteen months after Katrina, Gallaghers have linked up with Nymex and Carville has linked up with the Chicago Mercantile Exchange. Both are promoting different indices and contract specifications. Deutsche Bank trades natural cat swaps as Swiss Re Capital Markets has for sometime. Other exchanges, IFEX and ISE, are also exploring this space. And several private initiatives are mulled. Guy Carpenter has a Nat Cat facility and several ideas are bandied about but are subject to non disclosure requirements. All in all, this is encouraging and will be the subject of a subsequent paper. As a past Chairman of the CBoT insurance products development committee, and a trader in CBoT options in the nineties, we have some strong views of what might and might not work. But we are humbled enough by experience to know that

[^9]no one has a lock on wisdom in this area. For the present, suffice it to say that there is no doubt that the market is better placed to trade insurance than it was in the 1990's. We believe one of these mechanisms will eventually succeed. It will succeed if all the parties (buyers, sellers and brokers) want it and all the parties profit from its existence.

APPENDIX
ILS Tables - Long Term and Short Term - 2006/06 USAA/Residential Re Issue Case Study Successor Group - Specifications and Coverages
Term to Maturity Summary
Credit Ratings Summary
Investment Bankers/Co-Managers
Review of Market Trends
Potential Perils
ILS Secondary Market Price Summary

Table 1, Part 1, Appendix

Table 1, Part 2, Appendix

[^10]Table 2, Part 1, Appendix

Table 2, Part 2, Appendix

Table 3, Appendix

Residential Re Issues - 1997 to 2006																
Issue	Lead Underwriters	Amount (US \$Mil)	sep Rating	$\begin{gathered} \text { Moody's } \\ \text { Rating } \end{gathered}$	Fitch/DCR Rating	Issue Date	Maturity	Maturity Term	$\begin{aligned} & \text { Exposure } \\ & \text { Term } \end{aligned}$	$\begin{gathered} \text { Spread } \\ \text { Premium } \\ \text { to LIBOR } \\ \text { (bps) } \end{gathered}$	$\begin{aligned} & \text { Adjusted } \\ & \text { spread } \\ & \text { Premium } \\ & \text { (Annual) } \end{aligned}$	$\begin{aligned} & \text { Expected } \\ & \text { Loss } \\ & \text { (Annual) } \end{aligned}$	(Annual) Probability of 1sts (Annual	Probability of Exhast (Anual)	$\begin{aligned} & \text { Expected } \\ & \text { Exeess } \\ & \text { Retum } \\ & \text { (Annual) } \\ & \hline \end{aligned}$	Conditional Expected Loss
Residential ReI Class A-1	Goldman Sachs Merrill, Lynch; Lehman Bros.	163.8	aAar	Aaa	aAar	Jun-97	Jun-98	12	12	250	253	0.00\%	0.0000	0.0000	253	0.00\%
Residential ReI Class A-2	Goldman Sachs Merrill, Lynch; Lehman Bros.	313.2	вв	Ba2	вв	Jun-97	Jun-98	12	12	576	584	0.63\%	1.0000	0.4200	521	0.63\%
Residential Re II	Goldman Sachs Merrill, Lynch; Lehman Bros.	450.0		Ba2	вв	Jun-98	Jun-99	12	12	416	422	0.58\%	0.8700	0.3200	364	0.67\%
Residential Re III	Goldman Sachs Merrill, Lynch; Lehman Bros.	200.0	BB	Ba2		Jun-99	Jun-00	12	12	366	371	0.44\%	0.7600	0.2600	327	0.58\%
Residential Re 2000 Ltd.	Goldman Sachs Merrill, Lynch; Lehman Bros.	20.0	BB+		вв	May-00	Jun-01	12	12	410	416	0.54\%	0.9500	0.3100	362	0.57\%
Residential Re 2001 Ltd.	Goldman Sachs Merrill, Lynch; Lehman Bros.	150.0	BB+	Ba2		May-01	Jun-04	36	${ }^{36}$	499	506	0.68\%	1.1200	0.4100	438	0.61\%
Residential Re 2002 Ltd.	Goldman Sachs Merrill, Lynch; Lehman Bros.	125.0	BB+	Ba3		May-02	Jun-05	${ }^{36}$	${ }^{36}$	490	497	0.67\%	1.1200	0.4000	430	0.60\%
Residential Re 2003 Ltd.	Goldman Sachs BNP Paribas	160.0	BB+	Ba2		May-03	Jun-06	36	${ }^{36}$	495	502	0.48\%	1.1000	0.2800	454	0.44\%
Residential Re 2004 A	Goldman Sachs \&	127.5	BB	-	\cdots	May-04	Jun-07	${ }^{36}$	${ }^{36}$	595	${ }^{603}$	1.21\%	1.88800	0.7100	482	0.64\%
Residential Re 2004 B	BNP Paribas	100.0	в	-	--	May-04	Jun-07	36	${ }^{36}$	950	${ }_{96}$	3.16\%	5.0300	1.9000	647	0.63\%
Residential Re 2005 A	Goldman Sachs \&	91.0	вв	-	-	May-05	Jun-08	${ }^{36}$	${ }^{36}$	545	553	1.43\%	2.1700	0.9300	410	0.66\%
Residential Re 2005 B	BNP Paribas	85.0	в	-	..	May-05	Jun-08	36	36	845	857	3.41\%	5.2700	2.1800	516	0.65\%
Residential Re 2006 A		47.5	B	-	-	Jun-06	Jun-09	36	${ }^{36}$	1000	1014	2.66\%	3.7000	1.9600	748	0.72\%
Residential Re 2006 B	Goldman Sachs \&	0.0	в	-	.-							5.42\%	8.1600	3.3700		
Residential Re 2006 C	BNP Raribas	75.0	${ }^{\text {BB+ }}$	-	-	Jun-06	Jun-09	${ }^{36}$	${ }^{36}$	750	760	0.74\%	1.0600	${ }^{0.5100}$	686	0.70\%
Residential Re 2006 D		0.0	вв	.-	-							1.44\%	2.0300	1.0600		
Notes to Table 1 Indicated probabilities are based on the short term (sensitivity case) risk analysis for US Wind exposure. Classes C and D were aggregate coverages and thus more consistent with prior single class or Class A Residential Re issues. All deals are converted to a 365 -day year as LIBOR convention uses a 360-day year but CAT risk is a 365 -day year. Adjusted spreads are therefore comparable to reinsurance pricing. Expected Excess Return is defined as Adjusted Spread Premium less Expected Loss. Conditional Expected Loss is defined as Expected Loss divided by the Probability of First Dollar Loss.																

Figure 2, Appendix

Figure 3, Appendix

Figure 4, Appendix

Figure 6, Appendix

Table 4, Appendix

Total Issued, Single Peril	$\mathbf{8 9 8 . 3 5}$
Total Issued, Multi-Peril	293.15
Total Successor Issued	1191.5

TERM TO MATURITY

Amount in \$ Millions											
Maturity								$a^{e^{x^{x^{0}}}}$	20^{30}		TOTAL
12	717.6	720.6	345.7	427	165	0	35.5	21.5	18	495.8	2946.7
24	0	0	332.1	100	200	0	390	384.8	375	1646.8	3428.7
36	0	566.3	441.6	350	461.9	228	533.4	317.5	1615	2519.8	7033.5
42	0	0	0	0	0	321.9	150	0	369	51	891.9
48	0	0	0	120	0	282.3	83.2	247.5	230	557.5	1520.5
60	0	80	100	129	0	0	702.5	587	300	334	2232.5
OVER 60	168.5	0	0	0	0	0	0	245	370	0	783.5
TOTAL AVERAGE	886.1	1366.9	1219.4	1126	826.9	832.2	1894.6	1803.3	3277	5604.9	18837.3
DEAL SIZE: \% LONGER THAN 12	127	195	111	113	138	33	70	86	182	76	
MONTHS:	19\%	47\%	72\%	62\%	80\%	100\%	98\%	99\%	99\%	91\%	

CREDIT RATINGS (by tranche)

Amount in \$ Millions											
				$\theta^{\rho^{O^{\prime}}}$							TOTAL
AAA	230.3	23	0	0	0	0	0	0	436	526	1215.3
AA	0	60.7	0	0	0	0	0	0	0	268	328.7
A	0	283.1	0	0	50	0	26.5	237	215	244	1055.6
BBB	82	0	173	41	200	72.8	870.6	412.5	189	234	2274.9
BB	515	869.1	773.4	1057.9	572	759.4	712.6	879	1751	3400	11289.4
B	0	21	141.6	0	4.9	0	184.9	184.5	686	623	1845.9
NR	58.7	110	131.4	27.1	0	0	100	90	0	310	827.2
	886	1366.9	1219.4	1126	826.9	832.2	1894.6	1803	3277	5605	18837
AVERAGE TRANCHE											
SIZE	68.2	105.1	64.2	62.6	103.4	33.3	70.2	85.9	113.0	75.7	
\% OF ISSUES											
INVESTMENT GRADE	65\%	73\%	86\%	96\%	70\%	91\%	53\%	64\%	74\%	77\%	
DOWNGRADES OR WATCHES	NONE	NONE	HALYARD RE (SOREMA)	NONE				Phoenix QW II	KAMP Avalon		
LOSSES	NONE	NONE	RELIANCE IV GEORGE- TOWN RE	NONE							

RATINGS CHANGES OVER TIME

(by Number of Rated Tranches) 1998-3/2007

Source: Lane Financial LLC

CO-MANAGERS-(As listed on PPM, there may be multiple co-managers for each issue)
RANKED BY \$ AMOUNT OF ISSUE FOR 4/06-9/06
AMOUNT OF ISSUES AS CO-MGR

		$\stackrel{9}{9}_{9}^{98}$			$0^{0^{3}}$	$0^{0^{3^{3}}}$	$\alpha^{0^{3^{3}}}$	$\alpha^{\alpha^{3}}$	$\alpha^{0^{3}}$	$0^{0^{\circ}}$	TOTAL
SWISS RE*	237	0	0	220	365	674.2	1587.6	1138.3	1222	3930	9374.1
GOLDMAN SACHS	729.1	1176.9	1052.4	819	300	300	160	565	1686	1425	8213.4
LEHMAN	477	500	450	740	515	125	0	0	150	726.5	3683.5
AON*	0	80	317	67	194.9	33	100	100	0	640	1531.9
BNP PARIBAS	0	0	0	0	0	0	160	397.5	306	520	1383.5
CDC IXIS CAP MKTS*	0	0	0	0	0	0	147	0	0	442	589
ABN Amro	0	0	0	0	0	0	0	0	0	200.3	200.3
DEUTSCHE BANK SEC	0	0	0	0	0	0	0	0	0	160	160
MARSH*	0	0	300	0	0	0	100	0	0	0	400
MERRIL LYNCH	477	500	217	320	150	125	0	0	0	0	1789
MSDW	0	0	0	0	161.9	0	0	0	0	0	161.9
AM RE*	0	0	182.1	420	0	0	0	0	0	0	602.1
BLANCHE*	0	54	45.7	90	0	0	0	0	0	0	189.7
CENTRE*	83.6	56.6	0	0	0	0	0	0	0	0	140.2
CHASE	83.6	56.6	0	0	0	0	0	0	0	0	140.2
DLJ	83.6	56.6	0	0	0	0	0	0	0	0	140.2
ZURICH*	83.6	56.6	0	0	0	0	0	0	0	0	140.2
CSFB	137	0	0	0	0	0	0	0	0	0	137
LANE FINANCIAL*	20	10	0	0	0	0	0	0	0	0	30
SOC GEN	0	0	0	0	0	0	0	0	0	0	0
	2411.5	2547.3	2564.2	2676	1686.8	1257.2	2254.6	2200.8	3364	8043.8	29006.2
GOLDMANS											
SACHS SHARE	30\%	46\%	41\%	31\%	18\%	24\%	7\%	26\%	50\%	18\%	
LEHMAN BROS.											
SHARE	20\%	20\%	18\%	28\%	31\%	10\%	0\%	0\%	4\%	9\%	
REINSURERS AND											
INTERMEDIARIES*	18\%	10\%	33\%	30\%	33\%	56\%	86\%	56\%	36\%	62\%	
INVESTMENT											
BANKERS	82\%	90\%	67\%	70\%	67\%	44\%	14\%	44\%	64\%	38\%	

The "Potential Perils" graph is an attempt to show what perils a naïve investor would face if he/she purchased a portfolio of cat bonds each year. Assume the investor had $\$ 100$ to spend and every deal was available. With 10 deals he would buy $\$ 10$'s worth of each bond; if 20 deals were available he could invest $\$ 5$ in each one, etc. Now assuming that pattern, what perils would is he exposed to? The red foreground bars represent this year's portfolio, other bars show prior years.

The horizontal axis shows all the perils that we have seen securitized. The vertical axis shows how much money would be lost by this portfolio from a maximal event in each peril. Thus a repeat of the San Francisco 1906 earthquake would lose this portfolio holder 50% of his investment. And, this loss would accumulate from several of the bonds he held.

Since this is what the investor gets, it is, conversely, the risk that the traditional reinsurance market is trying to shed to the cat bond market. So the graph also tries to show where peril demand lies. Clearly, it is in the hazard zones of US wind and California quake.

Finally, note that this portfolio shows no "management" on the part of the "naïve" investor. He simply puts an equal chip on each risk shown. The sophisticated investor will seek to manage his portfolio so as to control his exposure to each peril. That is the art of the professional underwriter.

Second Quarter 2006 (6/30/06) Secondary Market Prices From Three Dealers	Issue Date Sponsor	Issuer	Spread at Issue	Average Market Indications
	Nov-05 Munich Re	Aiolis Ltd.	4.75\%	4.73\%
	Dec-03 Swiss Re	Arbor Capital I-III	15.00\%	18.81\%
	Sep-04 Swiss Re	Arbor Capital I-VI	12.75\%	19.28\%
	Dec-04 Swiss Re	Arbor Capita I-VII	12.50\%	18.71\%
	Mar-05 Swiss Re	Arbor Capital I-VIII	12.25\%	18.36\%
	Jun-05 Swiss Re	Arbor Capital I-IX	12.00\%	17.30\%
	Dec-05 Swiss Re	Arbor Capital I-X	14.50\%	18.77\%
	Oct-05 PXRe	Atlantic \& Western A	5.75\%	7.75\%
	Oct-05 PXRe	Atantic \& Western B	10.00\%	13.04\%
	Dec-05 PXRe	Atlantic \& Western II A	6.00\%	9.20\%
	Dec-05 PXRe	Atlantic \& Western II B	6.25\%	8.14\%
	Jan-05	Aura Re plc	2.70\%	1.32\%
	Jan-06 Swiss Re	Australis Ltd	4.00\%	3.87\%
	Jun-05 OCIL	Avalon Re Class A-2	2.13\%	8.74\%
	Jun-05 OCIL	Avalon Re Class B	3.60\%	25.70\%
	Jun-05 OCIL	Avalon Re Class C	7.75\%	78.21\%
New Issue in Qtr.	Jun-06 Swiss Re	Calabash Re A-1	8.50\%	8.65\%
New Issue in Qtr.	May-06 Munich Re	Carillon A-1	10.00\%	10.42\%
	Jun-05 FM Global	Cascadia Ltd.	3.13\%	3.00\%
New Issue in Qtr.	May-06 Swiss Re	CAT-Mex Ltd A	2.35\%	1.54\%
New Issue in Qtr.	May-06 Swiss Re	CAT-Mex Ltd B	2.30\%	1.51\%
	Dec-05 Montpelier Re	Champlain Ltd A	12.75\%	13.07\%
	Dec-05 Montpelier Re	Champlain Ltd B	13.50\%	14.69\%
New Issue in Qtr.	Jun-06 Dominion Res	Drewcat Capital	20.50\%	20.09\%
	Aug-03 Central Re	Formosa Re	3.30\%	3.14\%
	Nov-04 Hartford	Foundation Re Class A	4.10\%	7.29\%
	Nov-04 Hartford	Foundation Re Class B	1.95\%	2.77\%
	Nov-04 Hartford	Foundation Re Class D	7.25\%	8.58\%
	Jun-04	Gi Capital	3.15\%	2.91\%
	Jun-04 Converium	Helix 2004	5.40\%	5.78\%
	Jul-05 Zurich	KAMP Re	5.30\%	0.00\%
New Issue in Qtr.	Jun-06 Liberty Mutual	Mystic Re A	7.00\%	6.95\%
	Jul-03 Swiss Re	Oak Capital	4.75\%	5.30\%
	Jul-03 Swiss Re	Palm Capital	5.75\%	8.83\%
	Dec-97 Tokio Marine and Fire	Parametric Re	4.30\%	2.94\%
	Jun-03 Swiss Re	Phoenix Quake	2.45\%	1.63\%
	Jun-03 Swiss Re	Phoenix Quake/Wind	2.45\%	1.68\%
	Jun-03 Swiss Re	Phoenix Quake/Wind II	3.50\%	9.21\%
	Dec-03 Elec de Fr	Pylon A	1.50\%	1.08\%
	Dec-03 Elec de Fr	Pylon B	3.90\%	3.48\%
	Dec-04 Swiss Re	Redwood V	4.15\%	6.62\%
	Dec-04 Swiss Re	Redwood VI	4.05\%	6.70\%
	Feb-06 Swiss Re	Redwood VIII	5.25\%	6.07\%
	Feb-06 Swiss Re	Redwood VIII	5.25\%	6.07\%
	May-04 USAA	Residential Re 2004 Class A	5.95\%	10.18\%
	May-04 USAA	Residential Re 2004 Class B	9.50\%	16.33\%
	May-05 USAA	Residential Re 2005 Class A	5.45\%	10.27\%
	May-05 USAA	Residential Re 2005 Class B	8.45\%	16.19\%
New Issue in Otr.	Jun-06 USAA	Residential Re 2006 Class A	10.00\%	10.80\%
New Issue in Qtr.	Jun-06 USAA	Residential Re 2006 Class C	7.50\%	7.56\%
	Jul-03 Swiss Re	Sakura Capital	4.50\%	4.11\%
	Mar-04 Swiss Re	Sequoia Capital	5.75\%	7.38\%
New Issue in Otr.	Jun-06 Swiss Re	Successor Hurr Ind Class B-I	11.00\%	11.23\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor Hurr Ind Class C-I	15.30\%	15.42\%
New Issue in Otr.	Jun-06 Swiss Re	Successor Hurr Ind Class D-1	22.75\%	23.02\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor Hurr Ind Class D-II	17.10\%	17.41\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor Hurr Ind Class E-I	32.60\%	32.96\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor Hurr Ind Class E-II	24.50\%	25.21\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor Hurr Ind Class F-I	13.30\%	13.43\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor Hurr Mod Class B-1	10.65\%	10.75\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor CalQuake Para Cl A-1	7.25\%	7.19\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor JapQuake CI A-1	4.25\%	4.18\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor JapQuake CIB-I	5.85\%	5.78\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor JapQuake CIC-I	9.50\%	9.42\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor JapQuake Cl C-II	9.50\%	9.33\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor Eurownd CIA-1	5.25\%	5.35\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor EuroWnd CIA-II	5.25\%	5.42\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor EuroWnd Cl B-1	7.00\%	7.10\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor Eurownd CIC-I	12.00\%	26.76\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor Eurownd CIC-II	12.00\%	26.89\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor II Class A-I	17.50\%	17.67\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor II Class E-I	39.25\%	34.76\%
New Issue in Qtr.	Jun-06 Swiss Re	Successor III Class A-I	21.00\%	21.27\%
New Issue in Otr (tr.New ssue in Qtr.	Jun-06 Swiss Re	Successor IV Class A-I	16.50\%	16.72\%
	Jun-06 Balboa \& Subs.	Vasco Re 2006	8.50\%	8.55\%
			Average - Cat	11.74\%
Life Securitizations				
	Nov-05 Swiss Re	ALPS Capital II A	0.30\%	0.24\%
	Nov-05 Swiss Re	ALPS Capital II B	0.38\%	0.34\%
	Nov-05 Swiss Re	ALPS Capital IIC	F716.3	2.05\%
	Nov-05 Swiss Re	ALPS Capital IID	F1173.5	6.13\%
	Dec-04 Admin Re	Queensgate 2005-A	1.46\%	0.80\%
	Dec-04 Admin Re	Queensgate 2005-B	2.47\%	1.98\%
	Feb-06 Scotish Ann	Tartan Capital A	0.19\%	0.21\%
	Feb-06 Scottish Ann	Tartan Capital B	3.00\%	3.18\%
	Dec-03 Swiss Re	Vita Capital	1.35\%	0.93\%
	Apr-05 Swiss Re	Vita Capital II Class B	0.90\%	1.41\%
	Apr-05 Swiss Re	Vita Capital II Class C	1.40\%	2.13\%
	Apr-05 Swiss Re	Vita Capital II Class D	1.90\%	$\begin{aligned} & 2.91 \% \\ & 1.86 \% \\ & \hline \end{aligned}$
			Average - Life	1.86\%
			age - Combined	10.28\%

Third Quarter 2006 (9/30/06) Secondary Market Prices From Three Dealers	Issue Date Sponsor	Issuer	Spread at Issue	Average Market Indications
	Nov-05 Munich Re	Aiolis Ltd.	4.75\%	5.43\%
	Dec-03 Swiss Re	Arbor Capital IIIII	15.00\%	17.82\%
	Dec-04 Swiss Re	Arbor Capital I-VII	12.50\%	17.75\%
	Mar-05 Swiss Re	Arbor Capital I-VIII	12.25\%	17.79\%
	Jun-05 Swiss Re	Arbor Capital I-IX	12.00\%	16.46\%
	Dec-05 Swiss Re	Arbor Capital I-X	14.50\%	17.72\%
	Oct-05 PXRe	Atlantic \& Western A	5.75\%	7.85\%
	Oct-05 PXRe	Atlantic \& Western B	10.00\%	12.04\%
	Dec-05 PXRe	Atlantic \& Western II A	6.00\%	8.00\%
	Dec-05 PXRe	Atlantic \& Western II B	6.25\%	8.15\%
	Jan-05	Aura Re plc	2.70\%	2.53\%
	Jan-06 Swiss Re	Australis Ltd	4.00\%	3.81\%
	Jun-05 OCIL	Avalon Re Class A-2	2.13\%	9.63\%
	Jun-05 OCIL	Avalon Re Class B	3.60\%	34.30\%
	Jun-05 OCIL	Avalon Re Class C	7.75\%	94.52\%
	Jun-06 Swiss Re	Calabash Re A-1	8.50\%	8.04\%
	May-06 Munich Re	Carillon A-1	10.00\%	10.43\%
New Issue in Qtr.	May-06 Munich Re	Carillon A-2		4.34\%
New Issue in Qtr.	May-06 Munich Re	Carillon B		6.20\%
	Jun-05 FM Global	Cascadia Ltd.	3.13\%	3.99\%
New Issue in Qtr.	Aug-06 FM Global	Cascadia II Ltd.	4.00\%	4.03\%
	May-06 Swiss Re	CAT-Mex Ltd A	2.35\%	2.33\%
	May-06 Swiss Re	CAT-Mex Ltd B	2.30\%	2.30\%
	Dec-05 Montpelier Re	Champlain Ltd A	12.75\%	13.20\%
	Dec-05 Montpelier Re	Champlain Ltd B	13.50\%	15.52\%
	Jun-06 Dominion Res	Drewcat Capital	20.50\%	11.66\%
New Issue in Qtr.	Jul-06 Hannover Re	Eurus	6.25\%	6.43\%
New Issue in Qtr.	Aug-06 Tokio Marine	Fhu-Jin	3.90\%	3.85\%
	Nov-04 Hartford	Foundation Re Class A	4.10\%	6.61\%
	Nov-04 Hartford	Foundation Re Class B	1.95\%	3.49\%
	Nov-04 Hartford	Foundation Re Class D	7.25\%	8.59\%
	Jun-04	Gi Capital	3.15\%	2.90\%
	Jun-04 Converium	Helix 2004	5.40\%	6.06\%
	Jul-05 Zurich	KAMP Re	5.30\%	0.00\%
	Jun-06 Liberty Mutual	Mystic Re A	7.00\%	6.08\%
	Jul-03 Swiss Re	Oak Capital	4.75\%	6.05\%
	Jul-03 Swiss Re	Palm Capital	5.75\%	4.80\%
	Dec-97 Tokio Marine and Fire	Parametric Re	4.30\%	3.36\%
	Jun-03 Swiss Re	Phoenix Quake	2.45\%	1.87\%
	Jun-03 Swiss Re	Phoenix Quake/Wind	2.45\%	1.91\%
	Jun-03 Swiss Re	Phoenix Quake/Wind II	3.50\%	9.36\%
	Dec-03 Elec de Fr	Pylon A	1.50\%	1.43\%
	Dec-03 Elec de Fr	Pylon B	3.90\%	3.88\%
	Dec-04 Swiss Re	Redwood V	4.15\%	6.31\%
	Dec-04 Swiss Re	Redwood VI	4.05\%	6.25\%
	Feb-06 Swiss Re	Redwood VII	5.25\%	5.95\%
	Feb-06 Swiss Re	Redwood VIII	5.25\%	5.95\%
	May-04 USAA	Residential Re 2004 Class A	5.95\%	7.91\%
	May-04 USAA	Residential Re 2004 Class B	9.50\%	11.76\%
	May-05 USAA	Residential Re 2005 Class A	5.45\%	9.93\%
	May-05 USAA	Residential Re 2005 Class B	8.45\%	15.17\%
	Jun-06 USAA	Residential Re 2006 Class A	10.00\%	10.31\%
	Jun-06 USAA	Residential Re 2006 Class C	7.50\%	7.10\%
	Jul-03 Swiss Re	Sakura Capital	4.50\%	4.13\%
	Mar-04 Swiss Re	Sequoia Capital	5.75\%	7.91\%
New Issue in Qtr.	Aug-06 Endurance	Shackleton Re	8.00\%	7.81\%
	Jun-06 Swiss Re	Successor Hurr Ind Class B-I	11.00\%	9.31\%
	Jun-06 Swiss Re	Successor Hurr Ind Class C-I	15.30\%	12.94\%
	Jun-06 Swiss Re	Successor Hurr Ind Class D-1	22.75\%	19.43\%
	Jun-06 Swiss Re	Successor Hurr Ind Class D-II	17.10\%	9.94\%
	Jun-06 Swiss Re	Successor Hurr Ind Class E-I	32.60\%	27.35\%
	Jun-06 Swiss Re	Successor Hurr Ind Class E-II	24.50\%	14.67\%
New Issue in Qtr.	Aug-06 Swiss Re	Successor Hurr Ind Class E-III	49.20\%	21.13\%
	Jun-06 Swiss Re	Successor Hurr Ind Class F-1	13.30\%	11.18\%
	Jun-06 Swiss Re	Successor Hurr Mod Class B-1	10.65\%	9.04\%
	Jun-06 Swiss Re	Successor CalQuake Para CI A-1	7.25\%	7.45\%
	Jun-06 Swiss Re	Successor JapQuake CI A-1	4.25\%	4.07\%
	Jun-06 Swiss Re	Successor JapQuake CIB-I	5.85\%	5.65\%
	Jun-06 Swiss Re	Successor JapQuake CIC-I	9.50\%	9.32\%
	Jun-06 Swiss Re	Successor JapQuake CIC-II	9.50\%	9.18\%
	${ }^{\text {Jun-06 Swiss Re }}$	Successor Eurownd CI A-I	5.25%	5.77\%
	Jun-06 Swiss Re	Successor EuroWnd CIA-II	5.25\%	6.06\%
	Jun-06 Swiss Re	Successor Eurownd CIB-1	7.00\%	7.67\%
	Jun-06 Swiss Re	Successor Eurownd CIC-I	12.00\%	13.14\%
	Jun-06 Swiss Re	Successor EuroWnd CIC-II	12.00\%	14.68\%
	Jun-06 Swiss Re	Successor II Class A-I	17.50\%	17.28\%
	Jun-06 Swiss Re	Successor II Class E-I	39.25\%	37.71\%
	Jun-06 Swiss Re	Successor III Class A-I	21.00\%	20.13\%
	Jun-06 Swiss Re	Successor IV Class A-I	16.50\%	15.36\%
	Jun-06 Balboa \& Subs.	Vasco Re 2006	8.50\%	7.79\%
				10.69\%
Life Securitizations				
	Nov-05 Swiss Re	ALPS Capital II A	0.30\%	0.20\%
	Nov-05 Swiss Re	ALPS Capital II B	0.38\%	0.35\%
	Nov-05 Swiss Re	ALPS Capital II C	F716.3	2.15\%
	Nov-05 Swiss Re	ALPS Capital II D	F1173.5	6.13\%
	Dec-04 Admin Re	Queensgate 2005-A	1.46\%	3.43\%
	Dec-04 Admin Re	Queensgate 2005-B	2.47\%	1.98\%
	Feb-06 Scottish Ann	Tartan Capital A	0.19\%	0.22\%
	Feb-06 Scottish Ann	Tartan Capital B	3.00\%	3.33\%
	Dec-03 Swiss Re	Vita Capital	1.35\%	0.73\%
	Apr-05 Swiss Re	Vita Capital II Class B	0.90\%	1.29\%
	Apr-05 Swiss Re	Vita Capita III Class C	1.40\%	2.03\%
	Apr-05 Swiss Re	Vita Capital II Class D	1.90\%	2.84\%
				2.06\%
		Average - Combined		9.56\%
Other extant securities that may be maturing or are without any secondary prices.				
Oner extant secumes that	Dec-04 Admin Re	Queensgate 2005-C		
New Issue in Qtr. New Issue in Otr.	Aug-06 Endurance Aug-06 Endurance	Shackleton B Shackleton C	8.00%	

[^0]: ${ }^{1}$ See Recapitalizing Reinsurance - a never ending story, Lane Financial LLC, January 2007.

[^1]: ${ }^{2}$ See Sidecars and Such, Lane Financial LLC, January 2007
 ${ }^{3}$ The LFC Review papers are $1^{\text {st }}$ Quarter to 1st Quarter annual periods.

[^2]: ${ }^{5}$ Lane Financial LLC also acts as consultant to the World Bank on this transaction.

[^3]: ${ }^{4}$ In the interests of full disclosure, Lane Financial LLC acted as advisor to the Ministry of Finance in the CATMex transaction.

[^4]: ${ }^{6}$ The naming of Shackleton Re is interesting -
 Endurance was the ship that Shackleton used to begin his South Pole expedition. It met tragedy but

[^5]: ${ }^{8} \mathrm{~A}$ description of the mechanics of this transaction is available on out web site - The Optional Note: The Reliance III Case Study. Feb 1, 1998.

[^6]: ${ }^{9}$ For a fuller description see, A look at Avalon Re and ILS pricing at Mid Year, Sept. 1, 2005 on our web site.

[^7]: ${ }^{10}$ For convenience, the table rounds the prices that may be available to $\$ 91, \$ 71$ and $\$ 40$ as of March this year.

[^8]: ${ }^{11}$ UBS Swiss Alpine Summit, Gstaad, January 19, 2007
 ${ }^{12}$ Aigrain starts with a current outstanding of $\$ 25$
 billion and evidently includes many other insurance related instruments (such as sidecars) beyond ILS total of $\$ 10$ billion.

[^9]: ${ }^{13}$ Readers interested in this history might well review some early papers on the Lane Financial web site, in particular, The Perfume of Premium II, Dec. 19, 1998.

[^10]: Notes to Tabie 1

 - The table displays securities/tranches issued between April 2006 and March 2007. Section 1 shows 61 natural catastrophe issues/rranches that are analyzed in this paper. Section 2 shows 13 mortality based securities. Section 3 records 2 other related issues.
 All deals are converted to a 365 -day year as LIBOR convention uses a 360 -day year but CAT Tisk is a 365 -day year. Adjusted spreads are therefore comparable to reinsurance pricing.
 - \# indicates program offerings allowing periodic issues in each Class.
 - Transaction marked (") are by first time issuers.
 - Transaction marked (*) are by first time issuers.
 - OSIRIS B 1 carries a financial guaranty, B2 does not, resulting in different rating and spread.

